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INTRODUCTION

Atopic dermatitis (AD) is a chronic relapsing eczematous derma-
tosis that affects up to 20% of children and 10% of adults,1,2 with 45% 
beginning within the first 6 months of life and 60% during the first 
year.1 According to the Global Burden of Disease study, its prevalen-
ce has remained stable from 1997 to 2017 in the developed western 
countries, while it is still rising in the developing countries as indus-
trialization increases.2 

Family history of AD is the strongest identifiable risk factor, since 
the heritability of AD is estimated to be approximately 75%.3,4 Poly-
morphisms of immune response genes include alterations in the T-
-helper (Th) type 2 signaling pathway and other immune related 
genes, such as interleukin(IL)-31, IL-33, thymic stromal lymphopoie-
tin (TSLP) and its receptors, Toll-like receptor (TLR) 2 and high affinity 
IgE receptor.5 Genes encoding skin barrier proteins have also been 
implicated in AD.6 Filaggrin gene mutations are the strongest risk 

factor  (3-5 times higher risk for AD)4,7,8 and may be the initial step 
towards the development of both AD and other atopic diseases.1,5,9

Pathophysiology involves an interplay between a dysfunctional 
skin barrier and type 2 skewed innate and adaptive immune res-
ponses,4,5,10 with an inappropriate activation of Th2 cells and type 2 
innate lymphoid (ILC2) cells,11 particularly in the acute phase, with 
production of IL-4, IL-5, IL-13, IL-25, IL-31.12,13 Subsequently, after 
the sustained activation of Th2, Th22 and, in a smaller degree, Th17 
cells, a Th1 activation occurs,4,5,11,12 and in chronic lesions, there is an 
increase in Th1 cells, interferon-γ, IL-5, IL-12 and GM-CSF.10 

The main immune pathways involved vary between different eth-
nicities and may dictate different clinical presentations: higher Th2/
Th22 activation in European American patients,14 stronger Th17/
Th22 pathways in Asians, attenuated Th1/Th17 activation in African 
Americans and a strong Th17 skewing in early-onset pediatric AD.15,16

AD is frequently associated with other atopic comorbidities, with 
increasing evidence suggesting that skin defects may trigger further 
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atopic manifestations by enhancing allergen penetration through a 
defective epidermis and a type 2 skewed immune response triggering 
IgE-mediated sensitization to food and environmental allergens and 
predisposing individuals to other atopic diseases that integrate the so 
called “atopic march”. 

In this review, the authors describe the current knowledge of the 
pathophysiology of the epidermal barrier and its disruption in AD, 
how it may be involved in the development of atopic comorbidities 
and eventual preventive measures.  

1. Atopic March
The traditional atopic march model is defined as a progression of 

AD to food allergy, allergic asthma and rhinitis during the first years 
of life.17 AD is considered the first step of this progression with bar-
rier disfunction, inflammatory immune profile and microbial dysbio-
sis enhancing allergen sensitization.18,19 However, according to other 
authors an alternative atopic march model considers AD followed by 
any of the other atopic manifestations.19 Belgrave et al investigated 
two prospective cohorts, with a total of 9801 children, and concluded 
that only 3.1% of children followed the classic progression whereas 
according to the alternative model the prevalence of the atopic march 
increases to 10.5%.20 Apart from the genetic background, environ-
mental factors also influence the atopic march.18

2. Skin Barrier in AD
The skin provides an excellent barrier to prevent pathogen and 

allergen invasion, minimizing physical and chemical insults, and con-
trolling the normal insensible water loss.21,22

Skin barrier comprises the stratum corneum (air-liquid barrier), 

tight junctions (liquid-liquid barrier), Langerhans cells and  the innate 
immune cells (immunological barrier) and the microbiome (biologi-
cal barrier).23,24 Chemical and physical properties of the stratum cor-
neum (SC) and tight-junctions control permeation of environmental 
insults, while the competitive microbiome and the interplay between 
innate and adaptive immune systems allow an immediate and long-
-lasting protection against pathogens.25

Impaired skin barrier in AD includes abnormalities in the corni-
fied envelope, lipid lamellae, tight junctions and cutaneous microbio-
me, which are also present in nonlesional AD skin, thus suggesting 
that epidermal barrier defects precede the development of the clinical 
AD manifestations,26 and, eventually, other related allergic diseases.  

2.1 The stratum corneum in AD 
The SC composed of a continuous sheet of protein-enriched cells 

(corneocytes) connected by corneodesmosomes, embedded in an in-
tercellular matrix of multilamellar organized lipids (Fig. 1),21 is the 
main barrier against the entry of external agents. It limits pathogen 
colonization through its low water content, acidic pH, resident micro-
flora and surface antimicrobial lipids and peptides.21,27 

2.1.1 Cornified envelope
Corneocytes have a cornified envelope, a tough protein/lipid 

polymer structure21 composed of involucrin, loricrin, small proline-
-rich proteins (SPRP), envoplakin, periplakin and cysteine protease 
inhibitor A, that are cross-linked by transglutaminase.28 The internal 
surface of the cornified envelope is linked to the intracellular keratin 
filaments,22 and involucrin, envoplakin and periplakin of the external 
surface form covalent ester linkages with ω-hydroxyceramides in the 
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Figure 1 - Skin barrier. Stratum corneum is composed of a continuous sheet of corneocytes connected by corneodesmosomes, embedded in an 
intercellular matrix of multilamellar organized lipids. Lamellar bodies, present in the keratinocytes of the upper stratum spinosum and granu-
losum, contain the lipid precursors that are secreted at the interface with stratum corneum. Within the stratum granulosum, tight-junctions seal 
the paracellular pathway to reduce epithelial permeability. Epidermal dendritic cells mediate the link between the innate and adaptive immune 
system. Langerhans cells elongate their dendritic processes to uptake environmental antigens on the outer side of tight-junctions and then mi-
grate to the regional lymph nodes, where antigen presentation to lymphocytes occurs.
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intercellular lipid cement.21,22 The external lipid bilayer of the plasma 
membrane is replaced by a layer of acylceramides, forming the cor-
neocyte lipid envelope.29 

The surface area of AD corneocytes in lesional skin is significantly 
smaller than non-lesional and normal control skin, due to aberrant 
cornified envelope which impairs the adequate flattening of corneo-
cytes.30 Actually, proteins of the cornified envelope such as loricrin, 
involucrin and SPRP3 (and their encoding genes) are reduced,31-36 
translating a very late onset of terminal differentiation in granular 
keratinocytes.33 Moreover, lack or low levels of SPRP, specialized in 
cross-bridging loricrins, were responsible for bilayer disorganiza-
tion31,34 and were correlated with pruritus and concomitant asthma.31 

2.1.2 Filaggrin
Filaggrin (FLG) is a protein which aggregates keratin filaments 

and forms tight bundles within the keratinocyte cytoskeleton, there-
fore contributing to corneocyte collapse and flattening.7,37,38 Upon 
degradation, FLG releases hygroscopic amino acids and other mo-
lecules, including trans-urocanic acid and pyrrolidone-5-carboxylic 
acid, which together with sodium and chloride ions, urea and lactate 
form the natural moisturizing factor (NMF). This is essential for the 
low skin pH, the acidic epidermal pH gradient, cutaneous hydration, 
ultraviolet protection and epidermal barrier integrity.7,37,38 FLG defi-
ciency causes disorganized keratin filaments, reduced NMF levels, 
impaired lamellar body loading and abnormal architecture of the 
lamellar bilayer.37,39,40 

FLG loss of functions variants cause Ichthyosis vulgaris that pre-
sents with xerosis, scaling, keratosis pilaris, palmar and plantar 
hyperlinearity and a strong association with atopic disorders.41 Se-
veral loss of function mutations in the FLG gene occur in AD,6,8,42 
mostly in European American patients.14,43 FLG mutations are present 
in 7%-10% of Europeans, being more frequent in Northern European 
populations37,42 than in East and Southern Europe,44-46 and with diffe-
rent frequencies and mutations reported in other ethnic groups, such 
as Asian and African American.47-50 

FLG mutations are especially associated with early-onset AD,8,43,51 
palmar hyperlinearity,38,52  some variants are associated with a mode-
rate to severe AD,43,50 and FLG expression both in lesional and non-
-lesional skin is inversely correlated with AD severity.31 Also NMF and 
FLG status correlate with hyperlinearity in moderate to severe AD,38 
suggesting that palmar hyperlinearity may be a clue to FLG mutations 
in AD patients.

Age-of-onset is highly correlated with FLG status, implicating skin 
barrier disfunction as a potential cause of the atopic disorder.8 AD 
patients with food allergy have lower levels of FLG breakdown pro-
ducts in nonlesional skin53 and FLG mutations confer an increased 
risk of allergic sensitization in children with eczema,43 and greater 
risk of asthma, allergic rhinitis and food allergy. This suggests that 
a deficient cutaneous barrier may enhance percutaneous allergen 
exposure, further development of sensitization and expression of the 
allergic response through the barriers of others organs (nasal, con-
junctival and oral mucosa, digestive tract and lungs).38,39,54,55 

Although a few studies show a lack of FLG downregulation in 
childhood AD,15,16 filaggrin deficiency is of paramount importance 
in a significant percentage of patients, especially in the American 
European endotype, either due to a loss of function or also due to 
Th2-driven downregulation.

Actually proinflammatory cytokines, namely IL-4, also cause fi-
laggrin deficiency in AD.36 Dupilumab, a fully human monoclonal 
antibody directed against the α-subunit of the IL-4 receptor, shared 

for both IL-4 and IL-13,56 induces an increase of FLG as well as other 
barrier disruption markers, namely LOR, claudins and ELOVL3, al-
ready by week 4 and in a dose-dependent way.57 A similar effect was 
found with janus kinase (JAK) inhibitors and with an oral dual JAK/
spleen tyrosine kinase inhibitor that increased FLG staining and im-
proved epidermal hyperplasia along with suppression of Th2, Th17/
Th22 and Th1 cytokine pathways.58 Nevertheless, as none of these 
drugs have been used in very young children, their effects on the ato-
pic march are still unknown.

2.1.3 Corneodesmosomes
Corneodesmosomes are the main intercellular adhesive structure 

in the SC and provide tensile strength for corneocytes to resist shea-
ring forces.59,60 Their extracellular parts contain two desmosomal ca-
dherins, desmoglein 1 and desmocollin 1, and corneodesmosin, the 
major constitutional difference from desmosomes.59,61 CDSN gene is 
downregulated in AD skin,33,62 but corneodesmosome integrity and 
CDSN gene expression can also be modulated by Th2 cytokines (IL-4, 
IL-13, IL-22, IL-25 and IL-31).62 In murine skin and cultured human 
keratinocytes, IL-4 decreases the number of corneodesmosomes and 
downregulates desmoglein 1 expression.63 

Exogenous and endogenous proteases control corneodesmo-
some cleavage. Kallikrein-related peptidases (KLK) and cathepsins 
produced by keratinocytes, are involved in the cleavage of the cor-
neodesmosome junctions,59-61 whereas protease inhibitors like the 
lympho-epithelial Kazal type inhibitor (LEKTI) encoded by the serine 
protease inhibitor Kazal-type 5 gene (SPINK5), inhibit KLKs.9,64 

Desquamation follows corneodesmosome cleavage in a pH-
-dependent way. In the deep stratum corneum, neutral pH allows 
a strong LEKTI and KLK interaction and prevents corneodesmosome 
cleavage. However, as pH lowers in the superficial SC, LEKTI/KLK 
dissociate, allowing corneodesmosome degradation and desquama-
tion.60,61 

SPINK5 polymorphisms are associated with AD in certain popu-
lations,65-67 and AD is associated with increased activity of SC serine 
proteases,68,69 whose activity was correlated with total serum IgE and 
peripheral blood eosinophilia.69 Moreover, since KLK5 upregulates 
TSLP mRNA expression, lack of LEKTI is also associated with keratino-
cyte overexpression of TSLP,70 a cytokine that enhances Th2 skewing 
not only during the sensitization process, but also during the inflam-
matory loop that perpetuates AD.

2.1.4 Lipid lamellae
Intercellular lipids, which represent 10%-15% of the total SC 

mass, form the extracellular SC matrix with densely packed lipid 
layers (lipid lamellae)28,29 that control water retention within the SC 
and prevent allergen penetration.71 

Lipid lamellae are formed by an equimolar ratio of cholesterol, 
free fatty acids (FFA) and ceramides,29,72,73 which by weight represent 
45%-50% of ceramides, 25% of cholesterol, 10%-15% of free fatty 
acids, 5% of cholesterol sulphate and a small percentage of triacyl-
glycerol species.22,71 Aberrant lipid proportion results in skin barrier 
disfunction,28,74 and cholesterol, ceramides and FFA must be supplied 
in the adequate proportion to recover barrier disruption. In an acute-
ly damaged skin, topical applications of a single or two of the three 
key lipids actually delays barrier recovery, whereas topical equimolar 
mixtures normalize recovery rates.72

Glucosylceramides, sphingomyelin and phospholipids stored in 
lamellar bodies inside the keratinocytes of the upper stratum spino-
sum and granulosum are the precursors of these SC lipids.73 At the 
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interface with the SC, lamellar bodies fuse with the cell membrane 
and secrete these lipid precursors into the extracellular space as well 
as  β-glucocerebrosidase, acid sphingomyelinase and phospholipa-
se A, which are further metabolized to give rise to ceramides and 
FFAs.28,73 Ceramides contain mostly very long fatty acid chains linked 
via an amide to a sphingosine chain74 and have substantial quanti-
ties of highly hydrophobic ω-esterified ceramides arranged in lame-
llar membranes that control water retention.75 Cholesterol sulfate is 
broken down by sterol sulfatase to cholesterol.76 A reduction in the 
length of the chains of ceramides and FFAs,75,77 creates shorter and 
less condensed ceramide membranes with higher water permeabili-
ty.78 This may be due to an altered expression of fatty acid elongases 
(ELOVL),79 as shown by a reduced expression of ELOVL1, ELOVL3 and 
ELOVL6 in lesional skin.75,80  

SC lipids (both ceramides and FFAs) are decreased in AD,77 
and ceramide levels are significantly correlated with SCORAD and 
TEWL.81 Reduction in ω-esterified fatty acid sphingosine ceramides 
in the SC of AD patients was correlated with high TEWL, sensitization 
to food allergens and clinical manifestations of food allergy.53 

The immune response, namely  Th2 cytokines (IL-4/IL-13) in AD, 
also play a negative role in ceramide metabolism,75,81 by reducing 
mRNA levels encoding sphingomyelinase and glucocerebrosidase 
and downregulating ELOVL1, ELOVL3 and ELOVL6 expression.75,80,82

These lipid barrier defects have been associated with both pedia-
tric and adult AD. However, some lipid-associated mediators, such as 
fatty acyl-CoA reductase 2 and fatty acid 2-hydroxylase are preferen-
tially downregulated in pediatric AD.15

2.2 Tight Junctions
Tight junctions (TJ) are cell-cell junctions located in stratum gra-

nulosum, that seal the paracellular pathway to reduce epithelial 
permeability and restrict the movement of molecules within the inter-
cellular space,9,83 namely water, ions, proteins and also Langerhans 
cells’ dendrites.9,26,84 TJ are formed by transmembrane proteins (clau-
dins, ocludins, junctional adhesion molecule A and tricellunin) and 
cytosolic plaque proteins (Zonula occludens (ZO)-1, ZO-2, ZO-3, 
multi-PDZ domain protein 1, membrane-associate guanylate kinase 
and cingulin).85-87 

The epidermis is very rich in claudin-1 and claudin-488 but 
their levels are reduced in AD, causing barrier disfunction assessed 
by lower transepithelial electrical resistance and higher paracellular 
permeability.89,90 Claudin-1 knockout mice die within the first day of 
life due to a severely defective epidermal barrier,91 altered ceramide 
composition and insufficient filaggrin processing, supporting that a 
defective stratum granulosum may lead to an aberrant stratum cor-
neum.90,92,93 Also, low claudin-1 levels in AD lesional skin90,92-94 cor-
relate both with TJ barrier93 and abnormal epidermal differentiation 
and inflammation.88 However, claudin-1 levels in nonlesional skin 
have shown both reduced or normal values in cohorts from similar 
ancestries.89,92-94 

Variants of claudin-1 gene (CLDN1) have been associated with 
AD risk in an African-American cohort,26,89 early onset AD in an Ethio-
pian cohort,95 and AD with specific IgE to environmental molds,96 but 
not in a Finish cohort.51 There is also evidence that levels of claudin-4, 
claudin-23 and ZO-1, may be decreased in some AD patients.89,94 

As for filaggrin and lipid lamellae, TJs influence and are influen-
ced by the immune response, although contradictory results have 
been reported. De Benedetto et al observed an inverse correlation 
between epidermal claudin-1 expression and markers of Th2 pola-
rity (blood eosinophilia and serum total IgE),89 whereas Tokumasu et 

al found no correlation between claudin-1 level and IL-4 in AD pa-
tients.90 IL-33 down-regulates CLDN1 expression in keratinocytes,97 
and low claudin-1 levels induce IL-1β production and promote in-
flammation in the presence of Staphylococci, even non-pathogenic 
strains.93 

TJs are also critical in containing viral spread, and claudin-1 re-
duction enhances susceptibility to herpes simplex virus 1 (HSV-1) in-
fection.98 

2.3 Immune skin barrier and antimicrobial peptides
The epidermal immunological barrier includes both cellular and 

humoral components. Resident skin cells have a vast group of survei-
llance receptors that recognize pathogens and other insults and ac-
tivate innate immunity with cytokine and chemokine production and 
recruitment of neutrophils, monocytes, macrophages, dendritic cells 
(DC) and T lymphocytes, that will then be involved in the adaptative 
immune response.25

Keratinocytes bear membrane and cytosolic pathogen recogni-
tion receptors (PRRs), namely TLRs, RIG-I-like receptors, NOD-like 
receptors and DNA receptors25,99 that recognize pathogen-associated 
molecular patterns (PAMPs), such as bacterial lipopolysaccharides or 
viral RNA, and damage associated molecular patterns (DAMPs), na-
mely hyaluronic acid, heat shock proteins, oxidized lipids or lipo-
proteins.25,83,100 Upon activation by PAMPs or DAMPs, keratinocytes 
produce antimicrobial peptides and inflammatory cytokines of the 
innate immunity,25,100 namely defensins, cathelicidins, S100 pro-
teins, ribonucleases and dermcidin, with a broad spectrum activity 
against bacteria, virus, fungi and parasites. They also have immuno-
modulatory properties and are involved in skin barrier maintenan-
ce.101 Human-β-defensins (HBD) and cathelicidins (LL-37) increase 
upon cutaneous infection, inflammation or wound, but their expres-
sion is lower in AD skin.102,103 Furthermore, Th2-derived cytokines 
suppress HBD expression,103,104 with TSLP inhibiting HBD-2 through 
a JAK2/STAT3-dependent pathway.102 Lower expression of LL-37, 
HBD-2 and HBD-3 in lesional skin has been associated with eczema 
herpeticum and bacterial skin infections,102,105 and the susceptibility 
to the latter is further aggravated by the reduced dermcidin levels in 
AD sweat.106

Epidermal DC, namely Langerhans cells (LC), have similar PRRs, 
which upon activation, induce dendrite elongation to uptake extra-TJ 
antigens, before TJ barriers seal again the intercellular space.84 Then, 
DC migrate to regional lymph nodes where they present the antigen 
to lymphocytes.107 Therefore, the innate immune system mounts an 
effective defense against pathogens and initiates the adaptive im-
mune response.99 Dermal innate lymphoid cells (ILC) also contribute 
to natural immune defense and liaison with the acquired immune 
response,108 but in AD there is a very significant predominance of 
IL-5/IL-13 producing ILC (ILC2), causing a shift to a type 2 immune 
response.109,110 

2.4 The biological barrier and Staphylococcus aureus 
in AD

Skin commensals are essential for skin microbiome equilibrium 
and activation of resident T cells and keratinocytes, as they educa-
te them in combatting skin pathogens.111 In AD this equilibrium is 
impaired and significantly compromises this biological barrier and 
enhances infectious complications.112,113

Staphylococcus aureus (S. aureus) colonizes AD skin in an extent 
significantly correlated with disease activity.114,115 Risk factors for S. 
aureus colonization include decreased levels of filaggrin and filaggrin 
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degradation products, lower levels of coagulase-negative Staphylo-
coccus, altered lipid profiles, deficiency of antimicrobial peptides 
and overexpression of Th2 cytokines116-119 as IL-4 and IL-13 down-
regulate LL-37 and HBD-3.117 Also, fewer coagulase-negative Sta-
phylococci, such as S. epidermidis and S. hominis, allow a shift to 
S. aureus predominance during AD flares. This can be reversed by 
topical application of coagulase-negative Staphylococcus strains and 
other non-pathogenic bacteria,116,120 which also decrease SCORAD 
and pruritus, and alleviate cutaneous inflammation in AD.121,122 Mo-
reover, antimicrobial or anti-inflammatory treatment of AD flares also 
increases skin microbiome diversity.120

S. aureus exotoxins increase proinflammatory cytokines and 
proteases that affect keratinocytes and various immune cells in AD 
skin.117 Toxic shock syndrome toxin-1 (TSST-1), staphylococcal ente-
rotoxins (SEA, SEB, SEC, SED), exfoliative toxins (ETA and ETB), and 
leucocidin,123 behave as superantigens and induce polyclonal T and 
B cell proliferation and class switching to IgE and production of al-
lergen-specific IgE in mucosal B cells,117,124 and SEB increases IL-31 
expression, involved in pruritus, inhibits keratinocyte differentiation 
and suppresses filaggrin expression.117 

S. aureus may impair the usual tolerance to food and enhance 
food sensitization.125 Nasal carriage of S. aureus and skin coloniza-
tion occur more frequently in children with AD and food allergy and 
patients with allergic rhinitis.126-128 MRSA colonization is associated 
with higher levels of peanut specific IgE,129 and increased and per-
sistent levels of specific IgE to egg white and peanut, independent of 
eczema severity.125 In mice models, S. aureus enterotoxins, like SEB, in 
combination with ovalbumin enhance epicutaneous sensitization with 
specific IgE against SEB and ovalbumin,124 and augment ovalbumin 
induced airway hyperresponsiveness and lung inflammation, via an 
IL-17A-dependent pathway.130 Also, oral administration of SEB with 
ovalbumin resulted in immune responses to ovalbumin, with decrea-
sed regulatory T-cell function, impairment of immune tolerance and 
a predominant Th2 response.131 

In AD, vicious cycles between S. aureus infection and AD exa-
cerbation induce TSLP and favor Th2/Th17-type inflammation, IgE 
specific allergen sensitization and tissue damage.117

In summary, S. aureus colonization and dysbiosis in AD influen-
ce disease severity (IgE anti-S. aureus toxins), further disrupt the skin 
barrier, enhance food sensitization, inhibit oral tolerance induction 
and promote allergic responses in other organs, which may, therefo-
re, be regarded as one of drivers of the atopic march.125

3. Environmental allergens and epidermal sensi-
tization through AD skin

Physical, chemical and immunological epidermal barrier defects 
in AD may explain an increased sensitization to environmental and 
food allergens, due to their enhanced penetration but some of these 
allergens also contribute to skin barrier defects, as shown for S. au-
reus.

3.1 Environmental allergens and protease activity 
Many aeroallergens (pollen, house-dust mite (HDM), cockroa-

ches, Aspergillus sp, Penicillium sp) and some food-derived allergens 
have protease activity,132,133 which in addition to endogenous protea-
ses further disrupt the skin barrier and enhance inflammation, IgE 
production and allergen sensitization.134 Epidermal cytokines and 
chemokines induced by mite proteases attract and activate inflam-
matory cells and APC, suggesting the role of mite proteases in the 
initiation of sensitization through the skin.134

Proteases from cockroaches and mites activate protease-activa-
ted receptor 2, delay epidermal barrier recovery and lamellar body 
secretion after acute barrier disruption,135 therefore enhancing pene-
tration of allergens, irritants and molecules from other environmental 
allergen and microbes, that initiate and perpetuate inflammation.134 

Moreover, aeroallergens and food-derived allergens with protea-
se activity enhance specific IgE production and are further specifically 
recognized by IgE in sensitized patients.134 In human keratinocytes, 
HDM allergens stimulate innate IL-33 production, and environmental 
proteases promote Th2 skewing and IgE production.134 

Therefore, barrier disruption aggravated by environmental pro-
teases increases accessibility and IgE sensitization to these proteases, 
with subsequent initiation and perpetuation of inflammation both in 
the skin and other organs exposed to similar environmental aller-
gens.134

3.2 Impaired cutaneous barrier and percutaneous sen-
sitization

As previously referred, epidermal barrier disruption, further 
aggravated by itching, allows skin-resident APC, such as LC or DC, 
to reach the upper epidermis with their dendrites and capture en-
vironmental antigens more easily.9 Furthermore, barrier disrupted 
keratinocytes release alarmins and type-2 cytokines which beha-
ve as immune adjuvants to activate, mature DC and enhance their 
sensitizing capacity.9 In this setting, skin DC express high affinity IgE 
receptors, become coated with IgE, easily recognize and process ae-
roallergens or food allergens and cause both immediate and delayed 
allergic reactions.136 Many AD patients have increased IgE-media-
ted reactivity to aeroallergens, food proteins and microbial antigens 
which may precipitate atopic flares in IgE sensitized patients. Howe-
ver, there is not enough evidence to recommend strict avoidance of 
such allergens to improve or prevent AD.4

Other cutaneous disorders with skin barrier disruption have an 
increased risk of allergen sensitization, corroborating the relation be-
tween skin barrier disruption and allergic sensitization. In Netherton 
syndrome, an autosomal recessive disorder caused by loss of func-
tion mutations in SPINK5 with consequent deficiency of LEKTI-1/KLK 
inhibition, increased protease activity, enhanced degradation of cor-
neodesmosomes and SC detachment,137 there is severe skin inflam-
mation and allergic manifestations with elevated IgE, TSLP and TNF-α 
production.64,138 Peeling skin syndrome type B, another rare autoso-
mal recessive genodermatosis caused by CDSN mutations,139,140 
is associated with severe food allergies, allergic asthma and rhinitis, 
high IgE and eosinophilia.139,141 

3.3 TSLP and Th2 cytokines in food allergy, allergic as-
thma and allergic rhinitis

TSLP, an IL-7-like cytokine mainly expressed by epithelial cells 
and keratinocytes at barrier surfaces,70 is critically involved in body-
-environment interactions, Th2 responses and type 2 inflammation in 
multiple disease settings, including food allergy, allergic asthma and 
allergic rhinitis.142,143  

TSLP is highly expressed in acute and chronic AD lesions144,145 
where it can be induced by environmental (allergens, virus, helmin-
ths, cigarette smoke or chemicals) or endogenous triggers (Th2-re-
lated cytokines and IgE), suggesting its effect on Th2 amplification.70

TSLP polarizes skin DCs to a Th2 response during sensitization to 
food and aeroallergens presented through the damaged skin barrier 
of AD skin (face, lips, hands).142 Actually, in the cutaneous ambience 
rich in ILC2 and TSLP, IL-5 and IL-4/IL-13, APC that migrate to the 
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draining lymph nodes will sensitize naïve CD4+ T cells that will di-
fferentiate into allergen-specific Th2 cells that will promote class swi-
tching to IgE and form allergen-specific IgE memory B and plasma 
cells.111,146,147 In a further exposure, allergens recognized by specific 
IgEs bound to high affinity FcεRI receptors on mast cells and baso-
phils,111 cause immediate symptoms of food allergy (localized or ge-
neralized urticaria, gastrointestinal symptoms or even anaphylaxis), 
allergic asthma (bronchospasm, mucus production, and dyspnea), 
allergic rhinitis (pruritus, sneezing and rhinorrhea), and allergic con-
junctivitis (pruritus, red eye and weeping).

TSLP seems to be a key cytokine in sensitization to food exposed 
through the skin, as it increases antigen-specific serum IgE levels and 
enhances accumulation of intestinal mast cells involved in intestinal 
food allergy.142,148 In murine models, sensitization to ovalbumin and 
peanut through AD-like skin induced TSLP increase in the skin, whe-
reas knock-out mice lacking TSLP receptor were not prone to food 
allergy.148,149 

Similar pathways of sensitization to aeroallergens through AD 
skin and development of allergic asthma also involve TSLP produc-
tion by keratinocytes,142 and asthmatic patients have high expres-
sion of TSLP in the serum and airway epithelium.142,150 

Experimental models also implicate TSLP in allergic rhinitis, 
with TSLP receptor-deficient mice having less IgE production and 
less severe early responses in allergic rhinitis.143

A phase III trial with tezepelumab, a human monoclonal antibody 
against TSLP, in patients with severe uncontrolled asthma, showed a 
significantly lower annualized rate of asthma exacerbations compa-
red to the placebo group.151 However, in a phase IIa study, tezepelu-
mab in combination with topical steroids did not achieve statistically 
significant improvement in moderate to severe AD.152  

Dupilumab as well as JAK inhibitors progressively reverse the 
lesional transcriptome in AD and significantly reduce type 2 in-
flammation genes expression, epidermal hyperplasia, T cells, DC 
and Th17/Th22 activity.57,58,153 However, these drugs have not been 
introduced early enough to evaluate their capacity to prevent sen-
sitization to environmental allergens and, consequently, influence 
the atopic march. 

4. Early barrier intervention and immune modu-
lation – future perspectives on AD prevention and 
treatment

In the last decades, several studies have tried to modify the IgE-
-sensitization-promoting microenvironment of AD skin to prevent 
the atopic march, but results have not been convincing.154-158 

Emollients and other general measures that enhance skin bar-
rier repair from the very early days of life have generated contra-
dictory results, eventually related to the diversity of emollients used. 
In fact, paraffin-based/alcohol-based/petroleum-based emollients 
can be detrimental in AD, since the occlusion inhibits keratinocyte 
differentiation and enhances S. aureus colonization,159 whereas 
triple physiologic lipid-based barrier repair therapies composed 
of a ceramide-dominant mixture of the 3 key SC lipids (a 3:1:1 
molar ratio of ceramides, cholesterol and free fatty acids) seem 
more effective. They reduce TEWL in AD children as they amplify 
lipid production and delivery to the SC intercellular spaces, reple-
nish the lamellar bilayers,159,160 and prevent Th2 cytokine-induced 
reduction in SC ceramide content.160 Ongoing large randomized 
trials (PEBBLES and PreventADALL) are evaluating the effect of such 
emollients in preventing AD and food allergy in the first 12 months 
of life in infants with a family history of allergic disease.156,161

 CONCLUSION

Epidermal defects causing chemical, physical, immunological 
and biological disruption of the skin barrier are a key feature of AD. 
Abnormalities in the cornified envelope, filaggrin, lipid lamellae and 
tight junctions lead to a vulnerable epidermis, itching and abnor-
mal innate immune response with fewer antimicrobial peptides and 
dysbiosis. A Th2 shifted immune response further compromise the 
barrier by downregulating the synthesis of relevant epidermal com-
ponents. 

There is increasing evidence suggesting that a disrupted skin bar-
rier in AD, along with a type 2 skewed immune response, allows IgE 
sensitization and subsequent development of food allergy and airway 
hyperreactivity, and is, therefore, the initial event in the atopic march. 

Nevertheless, a better characterization of AD skin defects and 
how they really influence progression to other atopic diseases still 
needs further study. Therapies targeting these defects also need to 
be further studied as they may have beneficial implications in the 
prevention of AD and other atopic diseases162 that represent a real 
burden for the patients and the society.2
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1.  Which of the following statement is false regarding fila-
ggrin?
a. Filaggrin aggregates keratin filaments to form tight bundles 

within keratinocyte cytoskeleton.
b. Filaggrin degradation is essential for the elimination of the 

natural moisturizing factor.
c. Filaggrin mutations confer a 3-5 times higher risk for AD.
d. FLG mutations are associated with early-onset AD.
e. Filaggrin mutations increased the risk of allergic sensitization 

in children with eczema.
 

 
2. Which of the following statement is true about lipid me-

tabolism in skin barrier?
a. Cholesterol, free fatty acids and ceramides are the three 

major components of the lipid lamellae.
b. Glucosylceramides, sphingomyelin and phospholipids are 

stored in lamellar bodies in keratinocytes of the stratum 
basal.

c. Human skin ceramides with short chain fatty acids control 
better water retention.

d. In AD, there is a shift towards long-chain ceramides and FFAs 
and longer ceramide membranes.

e. Th2 cytokines in atopic dermatitis play a positive role in cera-
mide metabolism.

3. Considering Staphylococcus aureus colonization in ato-
pic dermatitis, select the wrong sentence:
a. S. aureus colonization is significantly correlated with disease 

activity.
b. Decreased levels of filaggrin are a risk factor for S. aureus 

colonization.
c. LL-37 and HBD-3 are downregulated by IL-4 and IL-13 in AD 

skin.
d. Coagulase-negative Staphylococcus reduce skin microbiome 

diversity during AD flares.
e. S. aureus proteases can impair the SC barrier function.

 
4. Regarding epidermal sensitization through AD skin, se-

lect the incorrect sentence:  
a. Alarmins and type-2 cytokines enhance activation and matu-

ration of Langerhans cells and Th2 polarization.
b. TSLP expression is decreased in acute and chronic AD le-

sions.
c. TSLP polarizes skin DCs to a Th2 response during the sensiti-

zation to food and aeroallergens.
d. Disrupted skin barrier favors IgE sensitization and subse-

quent airway hyperreactivity.
e. Environmental allergens may precipitate atopic flares in IgE 

sensitized patients.

TEST YOURSELF

Correct answers: 1 – b; 2 – a; 3 – d; 4 – b.   
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