Epidermal Barrier Dysfunction in Atopic Dermatitis

Keywords: Dermatitis, Atopic, Epidermis, Membrane Proteins, Tight Tunctions, Staphylococcus aureus

Abstract

Impaired skin barrier is one of the hallmarks of atopic dermatitis (AD), with abnormalities in the cornified envelope, lipid lamellae, tight junctions and cutaneous microbiome. These findings are also present in nonlesional skin of AD individuals, suggesting that epidermal barrier defects may be the initial step towards the development of AD and eventually other atopic diseases (atopic march). It is currently known that pathophysiology of AD involves an interplay between this dysfunctional skin barrier and a predominantly type 2 skewed innate and adaptive immune responses, which further disrupt the skin barrier through type 2 cytokines. In this setting, there is enhanced penetration of environmental and food allergens through a deficient barrier, leading to an increased susceptibility to sensitization. During the sensitization process, thymic stromal lymphopoietin (TSLP) polarizes skin dendritic cells to a T-helper 2 response, and TSLP seems to be a key cytokine in the sensitization of food allergy, allergic asthma and rhinitis. In this review, the authors describe the current knowledge of the pathophysiology of the epidermal barrier, its disruption in AD and how it may be involved in the development of atopic comorbidities and the role of barrier repair therapy on the prevention of the atopic march progression.

 

Downloads

Download data is not yet available.

References

Bieber T. Atopic Dermatitis. N Engl J Med. 2008;358:1483-94. doi:10.1056/NEJMra074081

Laughter MR, Maymone MB, Mashayekhi S, Arents BW, Karimkhani C, Langan SM, et al. The global burden of atopic dermatitis: lessons from the GBD Study - 1990 to 2017. Br J Dermatol. 2020;184:304-9. doi:10.1111/bjd.19580

Elmose C, Thomsen SF. Twin Studies of Atopic Dermatitis: Interpretations and Applications in the Filaggrin Era. J Allergy. 2015;2015:1-7. doi:10.1155/2015/902359

Langan SM, Irvine AD, Weidinger S. Atopic dermatitis. Lancet. 2020;396:345-60. doi:10.1016/S0140-6736(20)31286-1

Kim J, Kim BE, Leung DY. Pathophysiology of atopic dermatitis: Clinical implications. Allergy Asthma Proc. 2019;40:84-92. doi:10.2500/aap.2019.40.4202

Bin L, Leung DY. Genetic and epigenetic studies of atopic dermatitis. Allergy, Asthma Clin Immunol. 2016;12:52. doi:10.1186/s13223-016-0158-5

Cabanillas B, Novak N. Atopic dermatitis and filaggrin. Curr Opin Immunol. 2016;42:1-8. doi:10.1016/j.coi.2016.05.002

Smieszek SP, Welsh S, Xiao C, Wang J, Polymeropoulos C, Birznieks G, et al. Correlation of age-of-onset of Atopic Dermatitis with Filaggrin loss-of-function variant status. Sci Rep. 2020;10:2721. doi:10.1038/s41598-020-59627-7

De Benedetto A, Kubo A, Beck LA. Skin barrier disruption: a requirement for allergen sensitization? J Invest Dermatol. 2012;132:949-63. doi:10.1038/jid.2011.435

Fujii M. Current understanding of pathophysiological mechanisms of atopic dermatitis: interactions among skin barrier dysfunction, immune abnormalities and pruritus. Biol Pharm Bull. 2020;43:12-9. doi:10.1248/bpb.b19-00088

Moyle M, Cevikbas F, Harden JL, Guttman-Yassky E. Understanding the immune landscape in atopic dermatitis: The era of biologics and emerging therapeutic approaches. Exp Dermatol. 2019;28:756-68. doi:10.1111/exd.13911

Torres T, Ferreira EO, Gonçalo M, Mendes-Bastos P, Selores M, Filipe P. Update on Atopic Dermatitis. Acta Med Port. 2019;32:606-13. doi:10.20344/amp.11963

Grobe W, Bieber T, Novak N. Pathophysiology of atopic dermatitis. J Dtsch Dermatol Ges. 2019;17:433-40. doi:10.1111/ddg.13819

Nomura T, Wu J, Kabashima K, Guttman-Yassky E. Endophenotypic Variations of Atopic Dermatitis by Age, Race, and Ethnicity. J Allergy Clin Immunol Pract. 2020;8:1840-52. doi:10.1016/j.jaip.2020.02.022

Brunner PM, Israel A, Zhang N, Leonard A, Wen HC, Huynh T, et al. Early-onset pediatric atopic dermatitis is characterized by TH2/TH17/TH22-centered inflammation and lipid alterations. J Allergy Clin Immunol. 2018;141:2094-106. doi:10.1016/j.jaci.2018.02.040

Esaki H, Brunner PM, Renert-Yuval Y, Czarnowicki T, Huynh T, Tran G, et al. Early-onset pediatric atopic dermatitis is T H 2 but also T H 17 polarized in skin. J Allergy Clin Immunol. 2016;138:1639-51. doi:10.1016/j.jaci.2016.07.013

Spergel JM. From atopic dermatitis to asthma: The atopic march. Ann Allergy, Asthma Immunol. 2010;105:99-106.

Aw M, Penn J, Gauvreau GM, Lima H, Sehmi R. Atopic March: Collegium Internationale Allergologicum Update 2020. Int Arch Allergy Immunol. 2020;181:1-10. doi:10.1159/000502958

Hill DA, Camargo CA, Paller AS, Spergel JM. A march by any other name. Ann Allergy, Asthma Immunol. 2018;121:137-8. doi:10.1016/j.anai.2018.04.014

Belgrave DC, Granell R, Simpson A, Guiver J, Bishop C, Buchan I, et al. Developmental profiles of eczema, wheeze, and rhinitis: two population-based birth cohort studies. PLoS Med. 2014;11:e1001748. doi: 10.1371/journal.pmed.1001748.

Proksch E, Brandner JM, Jensen JM. The skin: an indispensable barrier. Exp Dermatol. 2008;17:1063-72. doi:10.1111/j.1600-0625.2008.00786.x

Madison KC. Barrier Function of the Skin: “La Raison d’Être” of the Epidermis. J Invest Dermatol. 2003;121:231-41. doi:10.1046/j.1523-1747.2003.12359.x

Kubo A, Nagao K, Amagai M. Epidermal barrier dysfunction and cutaneous sensitization in atopic diseases. J Clin Invest. 2012;122:440-7.

Skabytska Y, Kaesler S, Volz T, Biedermann T. How the innate immune system trains immunity: lessons from studying atopic dermatitis and cutaneous bacteria. J Dtsch Dermatol Ges. 2016;14:153-6. doi:10.1111/ddg.12843

Sun L, Liu W, Zhang L. The Role of Toll-Like Receptors in Skin Host Defense, Psoriasis, and Atopic Dermatitis. J Immunol Res. 2019;2019:1-13. doi:10.1155/2019/1824624

Brandner J, Zorn-Kruppa M, Yoshida T, Moll I, Beck L, De Benedetto A. Epidermal tight junctions in health and disease. Tissue Barriers. 2015;3:e974451. doi:10.4161/21688370.2014.974451

Elias PM. The skin barrier as an innate immune element. Semin Immunopathol. 2007;29:3-14.

Lee A-Y. Molecular Mechanism of Epidermal Barrier Dysfunction as Primary Abnormalities. Int J Mol Sci. 2020;21:1194. doi:10.3390/ijms21041194

Kubo A, Amagai M. Skin Barrier. In: Kang S, Amagai M, Bruckner A, et al., editors. Fitzpatrick’s Dermatology. 9th ed. New York: McGraw-Hill; 2019: p.206-31.

Igawa S, Kishibe M, Honma M, Murakami M, Mizuno Y, Suga Y, et al. Aberrant distribution patterns of corneodesmosomal components of tape-stripped corneocytes in atopic dermatitis and related skin conditions (ichthyosis vulgaris, Netherton syndrome and peeling skin syndrome type B). J Dermatol Sci. 2013;72:54-60. doi:10.1016/j.jdermsci.2013.05.004

Trzeciak M, Sakowicz-Burkiewicz M, Wesserling M, Dobaczewska D, Glen J, Nowicki R, et al. Expression of Cornified Envelope Proteins in Skin and Its Relationship with Atopic Dermatitis Phenotype. Acta Derm Venereol. 2017;97:36-41. doi:10.2340/00015555-2482

Trzeciak M, Olszewska B, Sakowicz-Burkiewicz M, Sokołowska-Wojdyło M, Jankau J, et al. Expression Profiles of Genes Encoding Cornified Envelope Proteins in Atopic Dermatitis and Cutaneous T-Cell Lymphomas. Nutrients. 2020;12:862. doi:10.3390/nu12030862

Guttman-Yassky E, Suárez-Fariñas M, Chiricozzi A, Nograles KE, Shemer A, Fuentes-Duculan J, et al. Broad defects in epidermal cornification in atopic dermatitis identified through genomic analysis. J Allergy Clin Immunol. 2009;124:1235-44.e58. doi:10.1016/j.jaci.2009.09.031

Carregaro F, Stefanini ACB, Henrique T, Tajara EH. Study of small proline-rich proteins (SPRRs) in health and disease: a review of the literature. Arch Dermatol Res. 2013;305:857-66. doi:10.1007/s00403-013-1415-9

Kim BE, Leung DYM, Boguniewicz M, Howell MD. Loricrin and involucrin expression is down-regulated by Th2 cytokines through STAT-6. Clin Immunol. 2008;126:332-7.

Howell MD, Kim BE, Gao P, Grant AV, Boguniewicz M, DeBenedetto A, et al. Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol. 2009;124:7-12. doi:10.1016/j.jaci.2009.07.012

Brown SJ, Irwin McLean WH. One Remarkable Molecule: Filaggrin. J Invest Dermatol. 2012;132:751-62. doi:10.1038/jid.2011.393

Drislane C, Irvine AD. The role of filaggrin in atopic dermatitis and allergic disease. Ann Allergy, Asthma Immunol. 2020;124:36-43. doi:10.1016/j.anai.2019.10.008

Kawasaki H, Nagao K, Kubo A, Hata T, Shimizu A, Mizuno H, et al. Altered stratum corneum barrier and enhanced percutaneous immune responses in filaggrin-null mice. J Allergy Clin Immunol. 2012;129:1538-46.e6. doi:10.1016/j.jaci.2012.01.068

Vávrová K, Henkes D, Strüver K, Sochorová M, Školová B, Witting MY, et al. Filaggrin Deficiency Leads to Impaired Lipid Profile and Altered Acidification Pathways in a 3D Skin Construct. J Invest Dermatol. 2014;134:746-53. doi:10.1038/jid.2013.402

Thyssen JP, Godoy-Gijon E, Elias PM. Ichthyosis vulgaris: the filaggrin mutation disease. Br J Dermatol. 2013;168:1155-66. doi:10.1111/bjd.12219

Rodríguez E, Baurecht H, Herberich E, Wagenpfeil S, Brown SJ, Cordell HJ, et al. Meta-analysis of filaggrin polymorphisms in eczema and asthma: Robust risk factors in atopic disease. J Allergy Clin Immunol. 2009;123:1361-70.e7. doi:10.1016/j.jaci.2009.03.036

Martin MJ, Estravís M, García-Sánchez A, Dávila I, Isidoro-García M, Sanz C. Genetics and Epigenetics of Atopic Dermatitis: An Updated Systematic Review. Genes. 2020;11:442. doi:10.3390/genes11040442

Giardina E, Paolillo N, Sinibaldi C, Novelli G. R501X and 2282del4 Filaggrin Mutations Do Not Confer Susceptibility to Psoriasis and Atopic Dermatitis in Italian Patients. Dermatology. 2008;216:83-4. doi:10.1159/000109365

Jurakic Toncic R, Kezic S, Jakasa I, Ljubojevic Hadzavdic S, Balic A, et al. Filaggrin loss-of-function mutations and levels of filaggrin degradation products in adult patients with atopic dermatitis in Croatia. J Eur Acad Dermatology Venereol. 2020;34:1789-94. doi:10.1111/jdv.16232

González-Tarancón R, Sanmartín R, Lorente F, Salvador-Rupérez E, Hernández-Martín A, Rello L, et al. Prevalence of FLG loss-of-function mutations R501X, 2282del4, and R2447X in Spanish children with atopic dermatitis. Pediatr Dermatol. 2020;37:98-102. doi:10.1111/pde.14025

Chen H, Common JEA, Haines RL, Balakrishnan A, Brown SJ, Goh CS, et al. Wide spectrum of filaggrin-null mutations in atopic dermatitis highlights differences between Singaporean Chinese and European populations. Br J Dermatol. 2011;165:106-14. doi:10.1111/j.1365-2133.2011.10331.x

Margolis DJ, Apter AJ, Gupta J, Hoffstad O, Papadopoulos M, Campbell LE, et al. The persistence of atopic dermatitis and filaggrin (FLG) mutations in a US longitudinal cohort. J Allergy Clin Immunol. 2012;130:912-17. doi:10.1016/j.jaci.2012.07.008

Margolis DJ, Gupta J, Apter AJ, Hoffstad O, Papadopoulos M, Rebbeck TR, et al. Exome Sequencing of Filaggrin and Related Genes in African-American Children with Atopic Dermatitis. J Invest Dermatol. 2014;134:2272-4. doi:10.1038/jid.2014.126

Margolis DJ, Mitra N, Wubbenhorst B, D'Andrea K, Kraya AA, Hoffstad O, et al. Association of Filaggrin Loss-of-Function Variants With Race in Children With Atopic Dermatitis. JAMA Dermatol. 2019;155:1269-76. doi: 10.1001/jamadermatol.2019.1946.doi:10.1001/jamadermatol.2019.1946

Luukkonen T, Kiiski V, Ahola M, Mandelin J, Virtanen H, Pöyhönen M, et al. The Value of FLG Null Mutations in Predicting Treatment Response in Atopic Dermatitis: An Observational Study in Finnish Patients. Acta Derm Venereol. 2017;97:456-63. doi:10.2340/00015555-2578

Lowe AJ, Lee B, Orchard D, King E, Abramson MJ, Allen KJ, et al. Palm reading and water divining: A cross-sectional study of the accuracy of palmar hyperlinearity and transepidermal water loss to identify individuals with a filaggrin gene null mutation. J Am Acad Dermatol. 2020;83:1186-8. doi:10.1016/j.jaad.2020.01.08

Leung DYM, Calatroni A, Zaramela LS, LeBeau PK, Dyjack N, Brar K, et al. The nonlesional skin surface distinguishes atopic dermatitis with food allergy as a unique endotype. Sci Transl Med. 2019;11. doi:10.1126/scitranslmed.aav2685

Esparza-Gordillo J, Weidinger S, Fölster-Holst R, Bauerfeind A, Ruschendorf F, Patone G, et al. A common variant on chromosome 11q13 is associated with atopic dermatitis. Nat Genet. 2009;41:596-601. doi:10.1038/ng.347

Weidinger S, O’Sullivan M, Illig T, Baurecht H, Depner M, Rodriguez E, et al. Filaggrin mutations, atopic eczema, hay fever, and asthma in children. J Allergy Clin Immunol. 2008;121:1203-9. doi:10.1016/j.jaci.2008.02.014

Wu J, Guttman-Yassky E. Efficacy of biologics in atopic dermatitis. Expert Opin Biol Ther. 2020;20:525-38. doi:10.1080/14712598.2020.1722998

Guttman-Yassky E, Bissonnette R, Ungar B, Suárez-Fariñas M, Ardeleanu M, Esaki H, et al. Dupilumab progressively improves systemic and cutaneous abnormalities in patients with atopic dermatitis. J Allergy Clin Immunol. 2019;143:155-72. doi:10.1016/j.jaci.2018.08.022

Pavel AB, Song T, Kim HJ, Del Duca E, Krueger JG, Dubin C, et al. Oral Janus kinase/SYK inhibition (ASN002) suppresses inflammation and improves epidermal barrier markers in patients with atopic dermatitis. J Allergy Clin Immunol. 2019;144:1011-24. doi:10.1016/j.jaci.2019.07.013

Ishida-Yamamoto A, Igawa S. The biology and regulation of corneodesmosomes. Cell Tissue Res. 2015;360:477-82. doi:10.1007/s00441-014-2037-z

Rawlings AV, Voegeli R. Stratum corneum proteases and dry skin conditions. Cell Tissue Res. 2013;351:217-35. doi:10.1007/s00441-012-1501-x

Ishida-Yamamoto A, Igawa S, Kishibe M. Order and disorder in corneocyte adhesion. J Dermatol. 2011;38:645-54. doi:10.1111/j.1346-8138.2011.01227.x

Lee UH, Kim BE, Kim DJ, Cho YG, Ye YM, Leung DY. Atopic dermatitis is associated with reduced corneodesmosin expression: role of cytokine modulation and effects on viral penetration. Br J Dermatol. 2017;176:537-40.

doi:10.1111/bjd.15010

Hatano Y, Adachi Y, Elias PM, Crumrine D, Sakai T, Kurahashi R, et al. The Th2 cytokine, interleukin-4, abrogates the cohesion of normal stratum corneum in mice: implications for pathogenesis of atopic dermatitis. Exp Dermatol. 2013;22:30-5. doi:10.1111/exd.12047

Furio L, Hovnanian A. Netherton syndrome: defective kallikrein inhibition in the skin leads to skin inflammation and allergy. Biol Chem. 2014;395:945-58. doi:10.1515/hsz-2014-0137

Zhao LP, Di Z, Zhang L, Wang L, Ma L, Lv Y, et al. Association of SPINK5 gene polymorphisms with atopic dermatitis in Northeast China. J Eur Acad Dermatology Venereol. 2012;26:572-7. doi:10.1111/j.1468-3083.2011.04120.x

Kusunoki T, Okafuji I, Yoshioka T, Saito M, Nishikomori R, Heike T, et al. SPINK5 polymorphism is associated with disease severity and food allergy in children with atopic dermatitis. J Allergy Clin Immunol. 2005;115:636-8. doi:10.1016/j.jaci.2004.12.1114

Li Y, Li Y, Li W, Guo X, Zhou S, Zheng H. Genetic polymorphisms in serine protease inhibitor Kazal-type 5 and risk of atopic dermatitis. Medicine. 2020;99:e21256. doi:10.1097/MD.0000000000021256

Voegeli R, Rawlings AV, Breternitz M, Doppler S, Schreier T, Fluhr JW. Increased stratum corneum serine protease activity in acute eczematous atopic skin. Br J Dermatol. 2009;161:70-7. doi:10.1111/j.1365-2133.2009.09142.x

Nomura H, Suganuma M, Takeichi T, Kono M, Isokane Y, Sunagawa K, et al. Multifaceted analyses of epidermal serine protease activity in patients with atopic dermatitis. Int J Mol Sci. 2020;21:913. doi:10.3390/ijms21030913

Takai T. TSLP Expression: Cellular Sources, Triggers, and Regulatory Mechanisms. Allergol Int. 2012;61:3-17. doi:10.2332/allergolint.11-RAI-0395

Wohlrab J, Gebert A, Neubert RH. Lipids in the Skin and pH. Curr Probl Dermatol. 2018;54:64-70. doi:10.1159/000489519

Elias PM. Stratum Corneum Defensive Functions: An Integrated View. J Invest Dermatol. 2005;125:183-200. doi:10.1111/j.0022-202X.2005.23668.x

van Smeden J, Janssens M, Gooris GS, Bouwstra JA. The important role of stratum corneum lipids for the cutaneous barrier function. Biochim Biophys Acta - Mol Cell Biol Lipids. 2014;1841:295-313. doi:10.1016/j.bbalip.2013.11.006

Janssens M, van Smeden J, Gooris GS, Bras W, Portale G, Caspers PJ, et al. Lamellar lipid organization and ceramide composition in the stratum corneum of patients with atopic eczema. J Invest Dermatol. 2011;131:2136-8. doi:10.1038/jid.2011.175

Berdyshev E, Goleva E, Bronova I, Dyjack N, Rios C, Jung J, et al. Lipid abnormalities in atopic skin are driven by type 2 cytokines. JCI Insight. 2018;3:e98006. doi:10.1172/jci.insight.98006

Rabionet M, Gorgas K, Sandhoff R. Ceramide synthesis in the epidermis. Biochim Biophys Acta - Mol Cell Biol Lipids. 2014;1841:422-34. doi:10.1016/j.bbalip.2013.08.011

Boer DEC, van Smeden J, Al-Khakany H, Melnik E, van Dijk R, Absalah S, et al. Skin of atopic dermatitis patients shows disturbed β-glucocerebrosidase and acid sphingomyelinase activity that relates to changes in stratum corneum lipid composition. Biochim Biophys Acta - Mol Cell Biol Lipids. 2020;1865:158673. doi:10.1016/j.bbalip.2020.158673

Pullmannová P, Pavlíková L, Kováčik A, Maixner J, Vávrová K. Permeability and microstructure of model stratum corneum lipid membranes containing ceramides with long (C16) and very long (C24) acyl chains. Biophys Chem. 2017;224:20-31. doi:10.1016/j.bpc.2017.03.004

Elias PM. Lipid abnormalities and lipid-based repair strategies in atopic dermatitis. Biochim Biophys Acta - Mol Cell Biol Lipids. 2014;1841:323-30. doi:10.1016/j.bbalip.2013.10.001

Danso M, Boiten W, van Drongelen V, Gmelig Meijling K, Gooris G, El Ghalbzouri A, et al. Altered expression of epidermal lipid bio-synthesis enzymes in atopic dermatitis skin is accompanied by changes in stratum corneum lipid composition. J Dermatol Sci. 2017;88:57-66. doi:10.1016/j.jdermsci.2017.05.005

Toncic RJ, Jakasa I, Hadzavdic SL, Goorden SM, Vlugt KJG, Stet FS,et al. Altered levels of sphingosine, sphinganine and their ceramides in atopic dermatitis are related to skin barrier function, disease severity and local cytokine milieu. Int J Mol Sci. 2020;21:1958. doi:10.3390/ijms21061958

Hatano Y, Katagiri K, Arakawa S, Fujiwara S. Interleukin-4 depresses levels of transcripts for acid-sphingomyelinase and glucocerebrosidase and the amount of ceramide in acetone-wounded epidermis, as demonstrated in a living skin equivalent. J Dermatol Sci. 2007;47:45-7. doi:10.1016/j.jdermsci.2007.02.010

Bäsler K, Bergmann S, Heisig M, Naegel A, Zorn-Kruppa M, Brandner JM. The role of tight junctions in skin barrier function and dermal absorption. J Control Release. 2016;242:105-18. doi:10.1016/j.jconrel.2016.08.007

Kubo A, Nagao K, Yokouchi M, Sasaki H, Amagai M. External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J Exp Med. 2009;206:2937-46. doi:10.1084/jem.20091527

Zaniboni MC, Samorano LP, Orfali RL, Aoki V. Skin barrier in atopic dermatitis: beyond filaggrin. An Bras Dermatol. 2016;91:472-8. doi:10.1590/abd1806-4841.20164412

Kezic S, Novak N, Jakasa I, Jungersted JM, Simon M, Brandner JM, et al. Skin barrier in atopic dermatitis. Front Biosci. 2014;19:542-56. doi: 10.2741/4225.

Niessen CM. Tight Junctions/Adherens Junctions: Basic Structure and Function. J Invest Dermatol. 2007;127:2525-32. doi:10.1038/sj.jid.5700865

Tokumasu R, Tamura A, Tsukita S. Time- and dose-dependent claudin contribution to biological functions: Lessons from claudin-1 in skin. Tissue Barriers. 2017;5:e1336194. doi:10.1080/21688370.2017.1336194

Benedetto A De, Rafaels NM, Mcgirt LY, Ivanov AI, Georas SN, Cheadle C, et al. Tight junction defects in patients with atopic dermatitis. J Allergy Clin Immunol. 2011;127:773-86.

Tokumasu R, Yamaga K, Yamazaki Y, Murota H, Suzuki K, Tamura A,et al. Dose-dependent role of claudin-1 in vivo in orchestrating features of atopic dermatitis. Proc Natl Acad Sci U S A. 2016;113:E4061-8. doi:10.1073/pnas.1525474113

Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y, et al. Claudin-based tight junctions are crucial for the mammalian epidermal barrier. J Cell Biol. 2002;156:1099-111. doi:10.1083/jcb.200110122

Gruber R, Börnchen C, Rose K, Daubmann A, Volksdorf T, Wladykowski E, et al. Diverse Regulation of Claudin-1 and Claudin-4 in Atopic Dermatitis. Am J Pathol. 2015;185:2777-89. doi:10.1016/j.ajpath.2015.06.021

Bergmann S, von Buenau B, Vidal-Y-Sy S, Haftek M, Wladykowski E, Houdek P, et al. Claudin-1 decrease impacts epidermal barrier function in atopic dermatitis lesions dose-dependently. Sci Rep. 2020;10:2024. doi:10.1038/s41598-020-58718-9

Yuki T, Tobiishi M, Kusaka-Kikushima A, Ota Y, Tokura Y. Impaired Tight Junctions in Atopic Dermatitis Skin and in a Skin-Equivalent Model Treated with Interleukin-17. Koval M, ed. PLoS One. 2016;11:e0161759. doi:10.1371/journal.pone.0161759

Asad S, Winge MC, Wahlgren CF, Bilcha KD, Nordenskjöld M, Taylan F, et al. The tight junction gene Claudin-1 is associated with atopic dermatitis among Ethiopians. J Eur Acad Dermatology Venereol. 2016;30:1939-41. doi:10.1111/jdv.13806

Yu HS, Kang MJ, Kwon JW, Lee SY, Lee E, Yang SI, et al. Claudin-1 polymorphism modifies the effect of mold exposure on the development of atopic dermatitis and production of IgE. J Allergy Clin Immunol. 2015;135:827-30.e5. doi:10.1016/j.jaci.2014.10.040

Ryu WI, Lee H, Bae HC, Jeon J, Ryu HJ, Kim J, et al. IL-33 down-regulates CLDN1 expression through the ERK/STAT3 pathway in keratinocytes. J Dermatol Sci. 2018;90:313-22. doi:10.1016/j.jdermsci.2018.02.017

De Benedetto A, Slifka MK, Rafaels NM, Kuo IH, Georas SN, Boguniewicz M, et al. Reductions in claudin-1 may enhance susceptibility to herpes simplex virus 1 infections in atopic dermatitis. J Allergy Clin Immunol. 2011;128:242-6.e5. doi:10.1016/j.jaci.2011.02.014

Kumar H, Kawai T, Akira S. Pathogen Recognition by the Innate Immune System. Int Rev Immunol. 2011;30:16-34. doi:10.3109/08830185.2010.529976

Chambers ES, Vukmanovic-Stejic M. Skin barrier immunity and ageing. Immunology. 2020;160:116-25. doi:10.1111/imm.13152

Niyonsaba F, Kiatsurayanon C, Chieosilapatham P, Ogawa H. Friends or Foes? Host defense (antimicrobial) peptides and proteins in human skin diseases. Exp Dermatol. 2017;26:989-98. doi:10.1111/exd.13314

Chieosilapatham P, Ogawa H, Niyonsaba F. Current insights into the role of human β-defensins in atopic dermatitis. Clin Exp Immunol. 2017;190:155-66. doi:10.1111/cei.13013

Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, et al. Endogenous Antimicrobial Peptides and Skin Infections in Atopic Dermatitis. N Engl J Med. 2002;347:1151-60. doi:10.1056/NEJMoa021481

Nomura I, Goleva E, Howell MD, Hamid QA, Ong PY, Hall CF, et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol. 2003;171:3262-9. doi:10.4049/jimmunol.171.6.3262

Hata TR, Kotol P, Boguniewicz M, Hata TR, Kotol P, Boguniewicz M, et al. History of eczema herpeticum is associated with the inability to induce human β-defensin (HBD)-2, HBD-3 and cathelicidin in the skin of patients with atopic dermatitis. Br J Dermatol. 2010;163:659-61. doi:10.1111/j.1365-2133.2010.09892.x

Rieg S, Steffen H, Seeber S, Humeny A, Kalbacher H, Stevanovic S, et al. Deficiency of dermcidin-derived antimicrobial peptides in sweat of patients with atopic dermatitis correlates with an impaired innate defense of human skin in vivo. J Immunol. 2005;174:8003-10. doi:10.4049/jimmunol.174.12.8003

Schwarz T. Immunology. In: Bolognia JL, Schaffer JV, Cerroni L, editors. Dermatology. 4th Ed. Amsterdam: Elsevier; 2018: p. 81-99.

Doherty TA, Broide DH. Group 2 innate lymphoid cells: new players in human allergic diseases. J Investig Allergol Clin Immunol. 2015;25:1-11.

Bao K, Reinhardt RL. The differential expression of IL-4 and IL-13 and its impact on type-2 immunity. Cytokine. 2015;75:25-37. doi:10.1016/j.cyto.2015.05.008

Rafei-Shamsabadi DA, Klose CS, Halim TY, Tanriver Y, Jakob T. Context Dependent Role of Type 2 Innate Lymphoid Cells in Allergic Skin Inflammation. Front Immunol. 2019;10:1-14. doi:10.3389/fimmu.2019.02591

Brough HA, Nadeau KC, Sindher SB, Alkotob SS, Chan S, Bahnson HT, et al. Epicutaneous sensitization in the development of food allergy: What is the evidence and how can this be prevented? Allergy. 2020;75:2185-205. doi:10.1111/all.14304

Wang V, Boguniewicz J, Boguniewicz M, Ong PY. The infectious complications of atopic dermatitis. Ann Allergy Asthma Immunol. 2021;126:3-12. doi:10.1016/j.anai.2020.08.002

Williams MR, Gallo RL. The role of the skin microbiome in atopic dermatitis. Curr Allergy Asthma Rep. 2015;15:65. doi:10.1007/s11882-015-0567-4

Roll A, Cozzio A, Fischer B, Schmid-Grendelmeier P. Microbial colonization and atopic dermatitis. Curr Opin Allergy Clin Immunol. 2004;4:373-8. doi:10.1097/00130832-200410000-00008

Hill SE, Yung A, Rademaker M. Prevalence of Staphylococcus aureus and antibiotic resistance in children with atopic dermatitis: A New Zealand experience. Australas J Dermatol. 2011;52:27-31. doi:10.1111/j.1440-0960.2010.00714.x

Nakatsuji T, Chen TH, Narala S, Chun KA, Two AM, Yun T, et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med. 2017;9:eaah4680. doi:10.1126/scitranslmed.aah4680

Kim J, Kim BE, Ahn K, Leung DY. Interactions between atopic dermatitis and Staphylococcus aureus infection: clinical implications. Allergy Asthma Immunol Res. 2019;11:593-603. doi:10.4168/aair.2019.11.5.593

Feuillie C, Vitry P, McAleer MA, Kezic S, Irvine AD, Geoghegan JA, et al. Adhesion of Staphylococcus aureus to corneocytes from atopic dermatitis patients is controlled by natural moisturizing factor levels. MBio. 2018;9: e01184-18. doi:10.1128/mBio.01184-18

Geoghegan JA, Irvine AD, Foster TJ. Staphylococcus aureus and atopic dermatitis: a complex and evolving relationship. Trends Microbiol. 2018;26:484-97. doi:10.1016/j.tim.2017.11.008

Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22:850-9. doi:10.1101/gr.131029.111

Gueniche A, Knaudt B, Schuck E, Volz T, Bastien P, Martin R, et al. Effects of nonpathogenic gram-negative bacterium Vitreoscilla filiformis lysate on atopic dermatitis: a prospective, randomized, double-blind, placebo-controlled clinical study. Br J Dermatol. 2008;159:1357-63. doi:10.1111/j.1365-2133.2008.08836.x

Volz T, Skabytska Y, Guenova E, Chen KM, Frick JS, Kirschning CJ, et al. Nonpathogenic bacteria alleviating atopic dermatitis inflammation induce IL-10-producing dendritic cells and regulatory Tr1 Cells. J Invest Dermatol. 2014;134:96-104. doi:10.1038/jid.2013.291

Błazewicz I, Jaskiewicz M, Piechowicz L, Neubauer D, Nowicki RJ, Kamysz W, et al. Activity of antimicrobial peptides and conventional antibiotics against superantigen positive Staphylococcus aureus isolated from patients with atopic dermatitis. Adv Dermatol Allergol. 2018;35:74-82. doi:10.5114/ada.2018.62141

Gould HJ, Takhar P, Harries HE, Chevretton E, Sutton BJ. The Allergic March from Staphylococcus aureus Superantigens to Immunoglobulin E. In: Marone G, editor. Superantigens and Superallergens. Berlin: KARGER; 2007. p.106-36. doi:10.1159/000100861

Tsilochristou O, du Toit G, Sayre PH, Roberts G, Lawson K, Sever ML, et al. Association of Staphylococcus aureus colonization with food allergy occurs independently of eczema severity. J Allergy Clin Immunol. 2019;144:494-503. doi:10.1016/j.jaci.2019.04.025

Riechelmann H, Essig A, Deutschle T, Rau A, Rothermel B, Weschta M. Nasal carriage of Staphylococcus aureus in house dust mite allergic patients and healthy controls. Allergy. 2005;60:1418-23. doi:10.1111/j.1398-9995.2005.00902.x

Shiomori T, Yoshida S, Miyamoto H, Makishima K. Relationship of nasal carriage of Staphylococcus aureus to pathogenesis of perennial allergic rhinitis. J Allergy Clin Immunol. 2000;105:449-54. doi:10.1067/mai.2000.104256

Zeldin Y, Weiler Z, Cohen A, Kalinin M, Schlesinger M, Kidon M, et al. Efficacy of nasal Staphylococcus aureus eradication by topical nasal mupirocin in patients with perennial allergic rhinitis. Ann Allergy Asthma Immunol. 2008;100:608-11. doi:10.1016/S1081-1206(10)60053-1

Jones AL, Curran-Everett D, Leung DYM. Food allergy is associated with Staphylococcus aureus colonization in children with atopic dermatitis. J Allergy Clin Immunol. 2016;137:1247-1248. e3. doi:10.1016/j.jaci.2016.01.010

Yu J, Oh MH, Park JU, Myers AC, Dong C, Zhu Z, et al. Epicutaneous exposure to Staphylococcal superantigen enterotoxin B enhances allergic lung inflammation via an IL-17A dependent mechanism. PLoS One. 2012;7:e39032. doi:10.1371/journal.pone.0039032

Ganeshan K, Neilsen CV, Hadsaitong A, Schleimer RP, Luo X, Bryce PJ. Impairing oral tolerance promotes allergy and anaphylaxis: A new murine food allergy model. J Allergy Clin Immunol. 2009;123:231-8.e4. doi:10.1016/j.jaci.2008.10.011

Celebi Sözener Z, Cevhertas L, Nadeau K, Akdis M, Akdis CA. Environmental factors in epithelial barrier dysfunction. J Allergy Clin Immunol. 2020;145:1517-28. doi:10.1016/j.jaci.2020.04.024

Nakamura T, Hirasawa Y, Takai T, Mitsuishi K, Okuda M, Kato T, et al. Reduction of skin barrier function by proteolytic activity of a recombinant house dust mite major allergen Der f 1. J Invest Dermatol. 2006;126:2719-23. doi:10.1038/sj.jid.5700584

Takai T, Ikeda S. Barrier dysfunction caused by environmental proteases in the pathogenesis of allergic diseases. Allergol Int. 2011;60:25-35.

Jeong SK, Kim HJ, Youm JK, Ahn SK, Choi EH, Sohn MH, et al. Mite and cockroach allergens activate protease-activated receptor 2 and delay epidermal permeability barrier recovery. J Invest Dermatol. 2008;128:1930-9. doi:10.1038/jid.2008.13

Weidinger S, Novak N. Atopic dermatitis. Lancet. 2016;387:1109-22. doi:10.1016/S0140-6736(15)00149-X

Sarri CA, Roussaki-Schulze A, Vasilopoulos Y, Zafiriou E, Patsatsi A, Stamatis C, et al. Netherton syndrome: a genotype-phenotype review. Mol Diagn Ther. 2017;21:137-52. doi:10.1007/s40291-016-0243-y

Hovnanian A. Netherton syndrome: skin inflammation and allergy by loss of protease inhibition. Cell Tissue Res. 2013;351:289-300. doi:10.1007/s00441-013-1558-1

Mallet A, Kypriotou M, George K, Leclerc E, Rivero D, Mazereeuw-Hautier J, et al. Identification of the first nonsense CDSN mutation with expression of a truncated protein causing peeling skin syndrome type B. Br J Dermatol. 2013;169:1322-5. doi:10.1111/bjd.12593

Bowden PE. Peeling skin syndrome: genetic defects in late terminal differentiation of the epidermis. J Invest Dermatol. 2011;131:561-4. doi:10.1038/jid.2010.434

Arjona Aguilera C, Albarrán Planelles C, Tercedor Sánchez J. Differential Diagnosis of genetic disorders associated with moderate to severe refractory eczema and elevated immunoglobulin E. Actas Dermo-Sifiliográficas 2016;107:116-24. doi:10.1016/j.adengl.2016.01.004

Adhikary PP, Tan Z, Page BDG, Hedtrich S. TSLP as druggable target – a silver-lining for atopic diseases? Pharmacol Ther. 2021;217:107648. doi:10.1016/j.pharmthera.2020.107648

Akasaki S, Matsushita K, Kato Y, Fukuoka A, Iwasaki N, Nakahira M, et al. Murine allergic rhinitis and nasal T h2 activation are mediated via TSLP- and IL-33-signaling pathways. Int Immunol. 2015;28(2):65-76. doi:10.1093/intimm/dxv055

Kim JH, Bae HC, Ko NY, Lee SH, Jeong SH, Lee H, et al. Thymic stromal lymphopoietin downregulates filaggrin expression by signal transducer and activator of transcription 3 (STAT3) and extracellular signal-regulated kinase (ERK) phosphorylation in keratinocytes. J Allergy Clin Immunol. 2015;136:205-8.e9. doi:10.1016/j.jaci.2015.04.026

Sano Y, Masuda K, Tamagawa-Mineoka R, Matsunaka H, Murakami Y, Yamashita R, et al. Thymic stromal lymphopoietin expression is increased in the horny layer of patients with atopic dermatitis. Clin Exp Immunol. 2013;171:330-7. doi:10.1111/cei.12021

Gour N, Wills-Karp M. IL-4 and IL-13 signaling in allergic airway disease. Cytokine. 2015;75:68-78. doi:10.1016/j.cyto.2015.05.014

Georas SN, Guo J, De Fanis V, Casolaro U. T-helper cell type-2 regulation in allergic disease. Eur Respir J. 2005;26:1119-37. doi:10.1183/09031936.05.00006005

Noti M, Kim BS, Siracusa MC, Rak GD, Kubo M, Moghaddam AE, et al. Exposure to food allergens through inflamed skin promotes intestinal food allergy through the thymic stromal lymphopoietin–basophil axis. J Allergy Clin Immunol. 2014;133:1390-9. doi:10.1016/j.jaci.2014.01.021

Frossard CP, Zimmerli SC, Rincon Garriz JM, Eigenmann PA. Food allergy in mice is modulated through the thymic stromal lymphopoietin pathway. Clin Transl Allergy. 2015;6:1-8. doi:10.1186/s13601-016-0090-2

Li Y, Wang W, Lv Z, Li Y, Chen Y, Huang K, et al. Elevated expression of IL-33 and TSLP in the airways of human asthmatics in vivo: a potential biomarker of severe refractory disease. J Immunol. 2018;200:2253-62. doi:10.4049/jimmunol.1701455

Menzies-Gow A, Corren J, Bourdin A, Chupp G, Israel E, Wechsler ME, et al. Tezepelumab in Adults and Adolescents with Severe, Uncontrolled Asthma. N Engl J Med. 2021;384:1800-9. doi:10.1056/NEJMoa2034975

Simpson EL, Parnes JR, She D, Crouch D, Rees W, Mo M, et al. Tezepelumab, an anti–thymic stromal lymphopoietin monoclonal antibody, in the treatment of moderate to severe atopic dermatitis: A randomized phase 2a clinical trial. J Am Acad Dermatol. 2019;80:1013-21. doi:10.1016/j.jaad.2018.11.059

Hamilton JD, Suárez-Fariñas M, Dhingra N, Cardinale I, Li X, Kostic A, et al. Dupilumab improves the molecular signature in skin of patients with moderate-to-severe atopic dermatitis. J Allergy Clin Immunol. 2014;134:1293-1300.

Fukuie T, Hirakawa S, Narita M, Nomura I, Matsumoto K, Tokura Y, et al. Potential preventive effects of proactive therapy on sensitization in moderate to severe childhood atopic dermatitis: A randomized, investigator-blinded, controlled study. J Dermatol. 2016;43:1283-92. doi:10.1111/1346-8138.13408

Chalmers JR, Haines RH, Bradshaw LE, Montgomery AA, Thomas KS, Brown SJ, et al. Daily emollient during infancy for prevention of eczema: the BEEP randomised controlled trial. Lancet. 2020;395:962-72. doi:10.1016/S0140-6736(19)32984-8

Skjerven HO, Rehbinder EM, Vettukattil R, LeBlanc M, Granum B, Haugen G, et al. Skin emollient and early complementary feeding to prevent infant atopic dermatitis (PreventADALL): a factorial, multicentre, cluster-randomised trial. Lancet. 2020;395:951-61. doi:10.1016/S0140-6736(19)32983-6

Kelleher MM, Cro S, Van Vogt E, C ornelius V, Lodrup Carlsen KC, Ove Skjerven H, et al. Skincare interventions in infants for preventing eczema and food allergy: A cochrane systematic review and individual participant data meta-analysis. Clin Exp Allergy. 2021;51:402-418. doi:10.1111/cea.13847

Simpson EL, Chalmers JR, Hanifin JM, Thomas KS, Cork MJ, McLean WH, et al. Emollient enhancement of the skin barrier from birth offers effective atopic dermatitis prevention. J Allergy Clin Immunol. 2014;134:818-23. doi: 10.1016/j.jaci.2014.08.005.

Sindher S, Alkotob SS, Shojinaga MN, Hamilton R, Chan S, Cao S, et al. Pilot study measuring transepidermal water loss (TEWL) in children suggests trilipid cream is more effective than a paraffin-based emollient. Allergy. 2020;75:2662-4. doi:10.1111/all.14275

Elias PM, Wakefield JS, Man MQ. Moisturizers versus current and next-generation barrier repair therapy for the management of atopic dermatitis. Skin Pharmacol Physiol. 2019;32:1-7. doi:10.1159/000493641

Lowe A, Su J, Tang M, Matheson M, Allen KJ, Varigos G,et al. PEBBLES study protocol: a randomised controlled trial to prevent atopic dermatitis, food allergy and sensitisation in infants with a family history of allergic disease using a skin barrier improvement strategy. BMJ Open. 2019;9:e024594. doi:10.1136/bmjopen-2018-024594

Czarnowicki T, Krueger JG, Guttman-Yassky E. Novel concepts of prevention and treatment of atopic dermatitis through barrier and immune manipulations with implications for the atopic march. J Allergy Clin Immunol. 2017;139:1723-34. doi:10.1016/j.jaci.2017.04.004

Published
2021-10-17
How to Cite
Gomes, T. F., Calado, R., & Gonçalo, M. (2021). Epidermal Barrier Dysfunction in Atopic Dermatitis . Journal of the Portuguese Society of Dermatology and Venereology, 79(3), 207-216. https://doi.org/10.29021/spdv.79.3.1405
Section
Continuous Medical Education