Dermite Atópica: Os Novos Conhecimentos Sobre a Fisiopatologia da Doença

  • Ana Sofia Borges Interna Formação Específica de Dermatovenerologia/Resident of Dermatovenereology, Serviço de Dermatovenerologia, Hospital Santo António dos Capuchos, Centro Hospitalar Lisboa Central, Lisboa, Portugal
  • Rita Pinheiro Interna Formação Específica de Dermatovenerologia/Resident of Dermatovenereology, Serviço de Dermatovenerologia, Hospital Santo António dos Capuchos, Centro Hospitalar Lisboa Central, Lisboa, Portugal
  • Ana Brasileiro Assistente Hospitalar de Dermatovenerologia/Consultant of Dermatovenereology, Serviço de Dermatovenerologia, Hospital Santo António dos Capuchos, Centro Hospitalar Lisboa Central, Lisboa, Portugal

Abstract

A dermite atópica é uma doença inflamatória crónica caraterizada por intenso prurido e lesões eczematosas recorrentes. Observa-se com maior frequência em crianças com história pessoal e/ou familiar de atopia, porém também ocorre na idade adulta. Embora anteriormente pensada como uma doença desencadeada por uma resposta imunitária Th2 inapropriada, estudos recentes têm demonstrado que a disfunção da barreira cutânea desempenha um papel crucial para a fisiopatologia da doença. Neste artigo será feita uma revisão dos mecanismos moleculares mais recentemente implicados na fisiopatologia da dermite atópica.

Downloads

Download data is not yet available.

References

Brito HS, Tavares E, Parente J, Aranha J, Silva MJ. Terapêutica biológica no eczema atópico. Rev Soc Port Dermatol Venereol. 2014; 72:86-9.

Elias PM, Hatano Y, Williams ML. Basis for the barrier abnormality in atopic dermatitis: outside-inside-outside pathogenic mechanisms. J Allergy Clin Immunol. 2008; 121:1337-43.

Bieber T. Atopic dermatitis. N Engl J Med. 2008;358:1483-94.

Guttman-Yassky E, Nograles KE, Krueger JG. Contrasting pathogenesis of atopic dermatitis and psoriasis—part I: clinical and pathologic concepts. J Allergy Clin Immunol.

; 127:1110-8.

Boguniewicz M, Leung DY. Recent insights into atopic

dermatitis and implications for management of infectious

complications. J Allergy Clin Immunol. 2010; 125:4-13.

Elias PM, Steinhoff M. “Outside-to-inside” (and now back

to “outside”) pathogenic mechanisms in atopic dermatitis.

J Invest Dermatol. 2008; 128:1067-70.

McAleer MA, Irvine AD. The multifunctional role of filaggrin

in allergic skin disease. J Allergy Clin Immunol.

; 131:280-91.

Bieber T, Novak N. Pathogenesis of atopic dermatitis:

new developments. Curr Allergy Asthma Rep. 2009;

:291-4.

Gittler JK, Shemer A, Suarez-Farinas M, Fuentes-Duculan

J, Gulewicz KJ, Wang CQ, et al. Progressive activation of

T(H)2/T(H)22 cytokines and selective epidermal proteins

characterizes acute and chronic atopic dermatitis. J Allergy

Clin Immunol. 2012; 130:1344-54.

Hanifin JM. Evolving concepts of pathogenesis in atopic

dermatitis and other eczemas. J Invest Dermatol. 2009;

:320-2.

Kezic S, Novak N, Jakasa I, Jungersted JM, Simon M,

Brandner JM, et al. Skin barrier in atopic dermatitis. Front

Biosc.i 2014; 19:542-56.

Weidinger S, Novak N. Atopic dermatitis. Lancet. 2016

; 387:1109-22.

Flohr C, England K, Radulovic S, McLean WH, Campbel

LE, Barker J, et al. Filaggrin loss-of-function mutations

are associated with early-onset eczema, eczema severity

and transepidermal water loss at 3 months of age. Br J

Dermatol. 2010; 163:1333-6.

Jungersted JM, Scheer H, Mempel M, Baurecht H, Cifuentes

L, Høgh JK, et al. Stratum corneum lipids, skin

barrier function and filaggrin mutations in patients with

atopic eczema. Allergy 2010; 65:911-8.

Ishikawa J, Narita H, Kondo N, Ishikawa J, Narita H,

Kondo N, et al. Changes in the ceramide profi le of atopic

dermatitis patients. J Invest Dermatol. 2010; 130:2511-

Janssens M, van Smeden J, Gooris GS, Bras W, Portale

G, Caspers PJ, et al. Increase in short-chain ceramides

correlates with an altered lipid organization and decreased

barrier function in atopic eczema patients. J Lipid

Res. 2012; 53:2755-66.

Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson

MA, et al. Temporal shifts in the skin microbiome associated

with disease flares and treatment in children with

atopic dermatitis. Genome Re.s 2012; 22:850-9.

Irvine AD, McLean WH, Leung DY. Filaggrin mutations

associated with skin and allergic diseases. N Engl J Med.

; 365:1315-27.

Riethmuller C, McAleer MA, Koppes SA, Abdayem R,

Franz J, Haftek M, et al. Filaggrin breakdown products

determine corneocyte conformation in patients with atopic

dermatitis. J Allergy Clin Immunol. 2015; 136:1573-

Sandilands A, Sutherland C, Irvine AD, McLean WH. Filaggrin

in the frontline: role in skin barrier function and

disease. J Cell Sci. 2009; 122:1285-94.

Vavrova K, Henkes D, Struver K, Sochorová M, Skolová B,

Witting MY, et al. Filaggrin deficiency leads to impaired

lipid profile and altered acidification pathways in a 3D

skin construct. J Invest Dermatol 2014; 134:746-53.

Boguniewicz M, Leung DY. Atopic dermatitis: a disease of

altered skin barrier and immune dysregulation. Immunol

Rev. 2011; 242:233-46.

Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y,

Liao H, Lee SP, et al. Common loss-of-function variants of

the epidermal barrier protein filaggrin are a major predisposing

factor for atopic dermatitis. Nat Genet. 2006;

:441-6.

Leung DY. Our evolving understanding of the functional

role of filaggrin in atopic dermatitis. J Allergy Clin Immunol.

; 124:494-5.

Henderson J, Northstone K, Lee SP, Liao H, Zhao Y, Pembrey

M, et al. The burden of disease associated with filaggrin

mutations: A population-based, longitudinal birth

cohort study. J Allergy Clin Immunol. 2008; 121:872-7.

Thyssen JP, Kezic S. Causes of epidermal filaggrin reduction

and their role in the pathogenesis of atopic dermatitis.

J Allergy Clin Immunol. 2014;-134:792-9.

Rupnik H, Rijavec M, Korošec P. Filaggrin loss-of-function

mutations are not associated with atopic dermatitis that

develops in late childhood or adulthood. Br J Dermatol.

; 172:455-61

Heede NG, Thyssen JP, Thuesen BH, Heede NG, Thyssen

JP, et al. Anatomical patterns of dermatitis in adult

filaggrin mutation carriers. J Am Acad Dermatol. 2015;

:440-8.

Rodríguez E, Baurecht H, Herberich E, Wagenpfeil S,

Brown SJ, Cordell HJ,et al. Meta-analysis of filaggrin

polymorphisms in eczema and asthma: robust risk factors

in atopic disease. J Allergy Clin Immunol. 2009;

:1361-70.

Yu HS, Kang MJ, Kwon JW, Lee SY, Lee E, Yang SI, et

al. Claudin-1 polymorphism modifies the effect of

mold exposure on the development of atopic dermatitis

and production of IgE. J Allergy Clin Immunol. 2015;

:827-30.

De Benedetto A, Slifka MK, Rafaels NM, Kuo IH, Georas

SN, Boguniewicz M, et al. Reductions in claudin-1 may

enhance susceptibility to herpes simplex virus 1 infections

in atopic dermatitis. J Allergy Clin Immunol. 2011;

:242-6.

Gruber R, Bornchen C, Rose K, Daubmann A, Volksdorf

T, Wladykowski E, et al. Diverse regulation of claudin-1

and claudin-4 in atopic dermatitis. Am J Pathol. 2015;

:2777-89.

Ewald DA, Malajian D, Krueger JG, Workman CT, Wang

T, Tian S, et al. Meta-analysis derived atopic dermatitis

(MADAD) transcriptome defines a robust AD signature

highlighting the involvement of atherosclerosis and

lipid metabolism pathways. BMC Med Genomics. 2015;

:60.

Cole C, Kroboth K, Schurch NJ, Sandilands A, Sherstnev

A, O'Regan GM, et al. Filaggrin-stratified transcriptomic

analysis of pediatric skin identifies mechanistic pathways

in patients with atopic dermatitis. J Allergy Clin Immunol.

; 34:82-91.

Suárez-Farinas M, Tintle SJ, Shemer A, Chiricozzi A, Nograles

K, Cardinale I, et al. Nonlesional atopic dermatitis

skin is characterized by broad terminal differentiation defects

and variable immune abnormalities. J Allergy Clin

Immunol. 2011; 127:954-64.

Leung DY, Boguniewicz M, Howell MD, Nomura I, Hamid

QA. New insights into atopic dermatitis. J Clin Invest.

; 113:651-7.

Noda S, Krueger JG, Guttman-Yassky E. The translational

revolution and use of biologics in patients with inflammatory

skin diseases. J Allergy Clin Immunol. 2015;

:324-36.

Sehra S, Yao Y, Howell MD, Nguyen ET, Kansas GS,

Leung DY, et al. IL-4 regulates skin homeostasis and the

predisposition toward allergic skin inflammation. J Immunol.

; 184:3186-90.

Kim BE, Leung DY, Boguniewicz M, Howell MD. Loricrin

and involucrin expression is down-regulated by

Th2 cytokines through STAT-6. Clin Immunol. 2008;

:332-7.

Howell MD, Kim BE, Gao P, Grant AV, Boguniewicz M,

Debenedetto A, et al. Cytokine modulation of atopic dermatitis

filaggrin skin expression. J Allergy Clin Immunol.

; 120:150-5.

Kim JE, Kim JS, Cho DH, Park HJ. Molecular mechanisms

of cutaneous inflammatory disorder: atopic dermatitis.

Int J Mol Sci. 2016; 30:17:E1234.

Sawada E, Yoshida N, Sugiura A, Imokawa G. Th1

cytokines accentuate but Th2 cytokines attenuate ceramide

production in the stratum corneum of human epidermal

equivalents: An implication for the disrupted barrier

mechanism in atopic dermatitis. J Dermatol Sci. 2012;

:25-35.

Howell MD, Fairchild HR, Kim BE, Bin L, Boguniewicz M,

Redzic JS, et al. Th2 cytokines act on S100/A11 to downregulate

keratinocyte differentiation. J Investig Dermatol.

; 128:2248-58.

Son ED, Kim HJ, Kim KH, Bin BH, Bae IH, Lim KM, et al.

S100a7(psoriasin) inhibits human epidermal differentiation

by enhanced IL-6 secretion through IƙB/NF-ƙB signaling.

Exp Dermatol. 2016; 25:636-41.

Gutowska-Owsiak D, Schaupp AL, Salimi M, Taylor S,

Ogg GS. Interleukin-22 downregulates filaggrin expression

and affects expression of profilaggrin processing enzymes.

Br J Dermatol. 2011; 165:492-8.

Sonkoly E, Muller A, Lauerma AI, Pivarcsi A, Soto H,

Kemeny L, et al. IL-31: A new link between t cells and

pruritus in atopic skin inflammation. J Allergy Clin Immunol.

; 117:411-7.

Raap U, Weißmantel S, Gehring M, Eisenberg AM, Kapp

A, Fölster-Holst R. IL-31 significantly correlates with disease

activity and Th2 cytokine levels in children with atopic

dermatitis. Pediatr Allergy Immunol. 2012; 23:285-8.

Ezzat MH, Hasan ZE, Shaheen KY. Serum measurement

of interleukin-31 (IL-31) in paediatric atopic dermatitis:

Elevated levels correlate with severity scoring. J Eur Acad

Dermatol Venereol. 2011; 25:334-9.

Kim S, Kim HJ, Yang HS, Kim E, Huh IS, Yang JM. IL-31

serum protein and tissue mRNA levels in patients with

atopic dermatitis. Ann Dermatol. 2011; 23:468-73.

Lowes MA, Kikuchi T, Fuentes-Duculan J, Cardinale I,

Zaba LC, Haider AS, et al. Psoriasis vulgaris lesions contain

discrete populations of Th1 and Th17 T cells. J Invest

Dermatol. 2008; 128:1207-11.

Kryczek I, Bruce AT, Gudjonsson JE, Johnston A, Aphale

A, Vatan L, et al. Induction of IL-17þ T cell trafficking

and development by IFN-gamma: mechanism and pathological

relevance in psoriasis. J Immunol. 2008;

:4733-41.

Czarnowicki T, Krueger JG, Guttman-Yassky E. Skin barrier

and immune dysregulation in atopic dermatitis: an

evolving story with important clinical implications. J Allergy

Clin Immunol Pract. 2014; 2:371-9.

Suárez-Fariñas M, Dhingra N, Gittler J, Shemer A, Cardinale

I, de Guzman Strong C, et al. Intrinsic atopic

dermatitis shows similar TH2 and higher TH17 immune

activation compared with extrinsic atopic dermatitis. J Allergy

Clin Immunol. 2013; 132:361-70.

Takai T. TSLP expression: cellular sources, triggers, and

regulatory mechanisms. Allergol Int. 2012; 61:3-17.

Liu YJ. Thymic stromal lymphopoietin: master switch for

allergic inflammation. J Exp Med. 2006; 203:269-73.

Sokol CL, Barton GM, Farr AG, Medzhitov R. A mechanism

for the initiation of allergen-induced T helper type 2

responses. Nat Immunol. 2008; 9:310–8.

Ziegler SF, Artis D. Sensing the outside world: TSLP regulates

barrier immunity. Nat Immunol. 2010; 11:289-93.

Nygaard U, Hvid M, Johansen C, Buchner M, Folster-

-Holst R, Deleuran M, et al. TSLP, IL-31, IL-33 and SST2

are new biomarkers in endophenotypic profiling of adult

and childhood atopic dermatitis. J Eur Acad Dermatol

Venereol. 2016; 30:1930-8.

Kim J, Kim BE, Lee J, Han Y, Jun HY, Kim H, et al. Epidermal

thymic stromal lymphopoietin predicts the development

of atopic dermatitis during infancy. J Allergy Clin

Immunol. 2016; 137:1282-5.

Saeki H, Nakahara T, Tanaka A, Kabashima K, Sugaya

M, Murota H, et al. Committee for Clinical Practice Guidelines

for the Management of Atopic Dermatitis of Japanese

Dermatological Association. Clinical Practice

Guidelines for the Management of Atopic Dermatitis

J Dermatol. 2016;43:1117-45.

Flohr C, Johansson S, Wahlgren C, Williams H. How atopic

is atopic dermatitis? J Allergy Clin Immunol. 2004;

:150-8.

Tang TS, Bieber T, Williams HC. Does "autoreactivity" play

a role in atopic dermatitis? J Dermatol. 2014; 41:569-

Cipriani F, Ricci G, Leoni MC, Capra L, Baviera G, Longo

G, et al. Autoimmunity in atopic dermatitis: biomarker or

simply epiphenomenon? J Dermatol. 2014; 41:569-76.

Zeller S, Rhyner C, Meyer N, Schmid-Grendelmeier P,

Akdis CA, Crameri R. Exploring the repertoire of IgE

binding self-antigens associated with atopic eczema. J

Allergy Clin Immunol. 2009; 124:278-85.

Natter S, Seiberler S, Hufnagl P, Binder BR, Hirschl AM,

Ring J, et al. Isolation of cDNA clones coding for IgE

autoantigens with serum IgE from atopic dermatitis patients.

FASEB J. 1998; 12:1559-69.

Mothes N, Niggemann B, Jenneck C, Hagemann T, Weidinger

S, Bieber T, et al. The cradle of IgE autoreactivity

in atopic eczema lies in early infancy. J Allergy Clin Immunol.

; 116:706-9.

Andersen YM, Egeberg A, Gislason GH, Skov L, Thyssen

JP. Autoimmune diseases in adults with atopic dermatitis

J Am Acad Dermatol. 2017; 2:274-80.

Published
2017-07-20
How to Cite
Borges, A. S., Pinheiro, R., & Brasileiro, A. (2017). Dermite Atópica: Os Novos Conhecimentos Sobre a Fisiopatologia da Doença. Journal of the Portuguese Society of Dermatology and Venereology, 75(2), 117-122. https://doi.org/10.29021/spdv.75.2.765
Section
Continuous Medical Education