Influence of Dysbiosis on Scalp Diseases
Abstract
Nos últimos anos vários estudos demonstraram a implicação da microbiota intestinal em várias doenças de mediação imune como a diabetes, a colite ulcerosa e a esclerose múltipla. Existem poucos dados sobre o microbioma folicular e o seu papel na patogénese de doenças que afetam o couro cabeludo, sendo uma área de investigação crescente. Alguns estudos mostram influência da disbiose nestas doenças, podendo a manipulação do microbioma representar uma possível opção terapêutica. Este artigo procura rever o conhecimento atual relativo ao impacto da disbiose nas doenças dermatológicas do couro cabeludo, como dermatite seborreica, psoríase, alopécia areata, alopécia androgenética, líquen plano pilar, alopécia fibrosante frontal e foliculite decalvante. Uma compreensão alargada deste tema poderá sugerir tratamentos adicionais além das terapêuticas convencionais.
Downloads
References
Barquero-Orias D, Muñoz Moreno-Arrones O, Vañó-Galván S. Alopecia and the Microbiome: A Future Therapeutic Target? Actas Dermosifiliogr. 2021;18:S0001-7310(21)00005-3. doi: 10.1016/j.ad.2020.12.005.
Inquimbert C, Bourgeois D, Bravo M, Viennot S, Tramini P, Llodra JC, et al. The Oral Bacterial Microbiome of Interdental Surfaces in Adolescents According to Carious Risk. Microorganisms. 2019;7:319. doi: 10.3390/microorganisms7090319.
Beausoleil M, Fortier N, Guénette S, L’ecuyer A, Savoie M, Franco M, et al. Effect of a fermented milk combining Lactobacillus acidophilus Cl1285 and Lactobacillus casei in the prevention of antibiotic-associated diarrhea: a randomized, doub. Can J Gastroenterol. 2007;21:732-6. doi: 10.1155/2007/720205.
Constantinou A, Kanti V, Polak-Witka K, Blume-Peytavi U, Spyrou GM, Vogt A. The Potential Relevance of the Microbiome to Hair Physiology and Regeneration: The Emerging Role of Meta-genomics. Biomedicines. 2021;9:236. doi: 10.3390/biomedicines9030.
Migacz-Gruszka K, Branicki W, Obtulowicz A, Pirowska M, Gruszka K, Wojas-Pelc A. What’s New in the Pathophysiology of Alopecia Areata? The Possible Contribution of Skin and Gut Mi- crobiome in the Pathogenesis of Alopecia - Big Opportunities, Big Challenges. Int J Trichology. 2019;11:185-8. doi: 10.4103/ijt.ijt_76_19.
Langan EA, Griffiths CEM, Solbach W, Knobloch JK, Zillikens D, Thaçi D. The role of the microbiome in psoriasis: moving from disease description to treatment selection? Br J Dermatol. 2018;178:1020-27. doi: 10.1111/bjd.16081.
Shibagaki N, Suda W, Clavaud C, Bastien P, Takayasu L, Iioka E, et al. Aging-related changes in the diversity of women’s skin microbiomes associated with oral bacteria. Sci Rep. 2017;7:10567. doi: 10.1038/s41598-017-10834-9.
Prescott SL, Larcombe DL, Logan AC, West C, Burks W, Caraballo L, et al. The skin microbiome: impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organ J. 2017;10:29. doi: 10.1186/s40413-017-0160-5.
Matard B, Meylheuc T, Briandet R, Casin I, Assouly P, Cavelier-balloy B, et al. First evidence of bacterial biofilms in the anaerobe part of scalp hair follicles: a pilot comparative study in folliculitis decalvans. J Eur Acad Dermatol Venereol. 2013;27:853-60. doi: 10.1111/j.1468-3083.2012.04591.x.
Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9:244-53. doi: 10.1038/nrmicro2537. Erratum in: Nat Rev Microbiol. 2011;9:626.
Dréno B, Araviiskaia E, Berardesca E, Gontijo G, Sanchez Viera M, Xiang LF, et al. Microbiome in healthy skin, update for dermatologists. J Eur Acad Dermatol Venereol. 2016;30:2038-47. doi: 10.1111/jdv.13965.
Polak-Witka K, Rudnicka L, Blume-Peytavi U, Vogt A. The role of the microbiome in scalp hair follicle biology and disease. Exp Dermatol. 2020;29:286-94. doi: 10.1111/exd.13935.
Blume-Peytavi U, Vogt A. Human hair follicle: reservoir function and selective targeting. Br J Dermatol. 2011;165 Suppl 2:13-7. doi: 10.1111/j.1365-2133.2011.10572.x.
Constantinou A, Polak-witka K, Tomazou M, Oulas A, Kanti V, Schwarzer R, et al. Dysbiosis and Enhanced Beta-Defensin Production in Hair Follicles of Patients with Lichen Planopilaris and Frontal Fibrosing Alopecia. Biomedicines. 2021;9:266. doi: 10.3390/biomedicines9030266. 15. Campbell DJ, Koch MA. Living in Peace: Host-Microbiota Mutualism in the Skin. Cell Host Microbe. 2017; 21:419–20. doi: 10.1016/j.chom.2017.03.012.
Nagy G, Huszthy PC, Fossum E, Konttinen Y, Nakken B, Szodoray P. Selected aspects in the pathogenesis of autoimmune diseases. Mediators Inflamm. 2015;2015:351732. doi: 10.1155/2015/351732.
Lloyd-Price J, Abu-Ali G CH. The healthy human microbiome. Genome Med. 2016;8:51. doi: 10.1186/s13073-016-0307-y.
Scarpellini E, Ianiro G, Attili F, Bassanelli C, De Santis A, Gasbarrini A. The human gut microbiota and virome: potential therapeutic implications. Dig Liver Dis. 2015;47:1007-12. doi: 10.1016/j.dld.2015.07.008.
Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R, Kastenmuller W, et al. Compartmentalized control of skin immunity by resident commensals. Science. 2012;337:1115–9. doi: 10.1126/science.1225152.
The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14. doi: 10.1038/nature11234.
Kocic H, Damiani G, Stamenkovic B, Tirant M, Jovic A, Tiodorovic D, et al. Dietary compounds as potential modulators of microRNA expression in psoriasis. Ther Adv Chronic Dis. 2019;10: 2040622319864805. doi: 10.1177/2040622319864805.
Polkowska-Pruszynska B, Gerkowicz A, Krasowska D. The gut microbiome alterations in allergic and inflammatory skin diseases—an update. J Eur Acad Dermatol Venereol. 2020;34:455–64. doi: 10.1111/jdv.15951.
Salem I, Ramser A, Isham N, Ghannoum MA. The gut microbiome as a major regulator of the gut-skin axis. Front Microbiol. 2018;9:1459. doi: 10.3389/fmicb.2018.01459.
Colucci R, Moretti S. Implication of Human Bacterial Gut Microbiota on Immune-Mediated and Autoimmune Dermatological Diseases and Their Comorbidities: A Narrative Review. Dermatol Ther. 2021;11:363-84. doi: 10.1007/s13555-021-00485-0.
Borde A, Åstrand A. Alopecia areata and the gut-the link opens up for novel therapeutic interventions. Expert Opin Ther Targets. 2018;22:503-511. doi: 10.1080/14728222.2018.1481504.
Schwartz JR, Messenger AG, Tosti A, Todd G, Hordinsky M, Hay RJ, Wang X, Zachariae C, Kerr KM, Henry JP, Rust RC, Robinson MK. A comprehensive pathophysiology of dandruff and seborrheic dermatitis - towards a more precise definition of scalp health. Acta Derm Venereol. 2013;93:131-7. doi: 10.2340/00015555-1382.
Heng MC, Henderson CL, Barker DC, Haberfelde G. Correlation of Pityosporum ovale density with clinical severity of seborrheic dermatitis as assessed by a simplified technique. J Am Acad Dermatol. 1990;23:82-6. doi: 10.1016/0190-9622(90)70191-j. PMI.
Park HK, Ha MH, Park SG, Kim MN, Kim BJ, Kim W. Characterization of the fungal microbiota (mycobiome) in healthy and dandruff-afflicted human scalps. PLoS One. 2012;7:e32847. doi: 10.1371/journal.pone.0032847.
Xu Z, Wang Z, Yuan C, Liu X, Yang F, Wang T, et al. Dandruff is associated with the conjoined interactions between host and microorganisms. Sci Rep. 2016;6:24877. doi: 10.1038/srep24877.
Perez Perez GI, Gao Z, Jourdain R, Ramirez J, Gany F, Clavaud C, et al. Body Site Is a More Determinant Factor than Human Population Diversity in the Healthy Skin Microbiome. PLoS One. 2016;11:e0151990. doi: 10.1371/jour.
Brinkac L, Clarke TH, Singh H, Greco C, Gomez A, Torralba MG, et al. Spatial and Environmental Variation of the Human Hair Microbiota. Sci Rep. 2018;8:9017. doi: 10.1038/s41598-018-27100-1.
Hald M, Arendrup MC, Svejgaard EL, Lindskov R, Foged EK, Saunte DM; Danish Society of Dermatology. Evidence-based Danish guidelines for the treatment of Malassezia-related skin diseases. Acta Derm Venereol. 2015;95:12-9. doi: 10.2340/00015555-1825.
Soares RC, Zani MB, Arruda AC, Arruda LH, Paulino LC. Malassezia intra-specific diversity and potentially new species in the skin microbiota from Brazilian healthy subjects and seborrheic dermatitis patients. PLoS One. 2015;10:e0117921. doi: 10.
Saxena R, Mittal P, Clavaud C, Dhakan DB, Hegde P, Veeranagaiah MM, et al. Comparison of Healthy and Dandruff Scalp Microbiome Reveals the Role of Commensals in Scalp Health. Front Cell Infect Microbiol. 2018;8:346. doi: 10.3389/fcimb.2018.00346.
Clavaud C, Jourdain R, Bar-Hen A, Tichit M, Bouchier C, Pouradier F, et al. Dandruff is associated with disequilibrium in the proportion of the major bacterial and fungal populations colon. PLoS One. 2013;8:e58203. doi: 10.1371/journal.pone.0058203.
Wang L, Clavaud C, Bar-Hen A, Cui M, Gao J, Liu Y, et al. Characterization of the major bacterial-fungal populations colonizing dandruff scalps in Shanghai, China, shows microbial disequilibrium. Exp Dermatol. 2015;24:398-400. doi: 10.1111/exd.12684.
Park T, Kim HJ, Myeong NR, Lee HG, Kwack I, Lee J, et al. Collapse of human scalp microbiome network in dandruff and seborrhoeic dermatitis. Exp Dermatol. 2017;26:835-8. doi: 10.1111/exd.13293.
Gianchecchi E, Fierabracci A. Recent Advances on Microbiota Involvement in the Pathogenesis of Autoimmunity. Int J Mol Sci. 2019;20:283. doi: 10.3390/ijms20020283.
Gran F, Kerstan A, Serfling E, Goebeler M, Muhammad K. Current developments in the immunology of psoriasis. Yale J Biol Med. 2020;93: 97–110.
Fahlén A, Engstrand L, Baker BS, Powles A, Fry L. Comparison of bacterial microbiota in skin biopsies from normal and psoriatic skin. Arch Dermatol Res. 2012;304:15-22. doi: 10.1007/s00403-011-1189-x.
Gao Z, Tseng CH, Strober BE, Pei Z, Blaser MJ. Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS One. 2008;3:e2719. doi: 10.1371/journal.pone.0002719.
Benhadou F, Mintoff D, Schnebert B, Thio HB. Psoriasis and Microbiota: A Systematic Review. Diseases. 2018;6:47. doi: 10.3390/diseases6020047.
Gomez-Moyano E, Crespo-Erchiga V, Martínez-Pilar L, Godoy Diaz D, Martínez-García S, Lova Navarro M, et al. Do Malassezia species play a role in exacerbation of scalp psoriasis? J Mycol Med. 2014;24:87-92. doi: 10.1016/j.mycmed.2013.10.007.
Chang HW, Yan D, Singh R, Liu J, Lu X, Ucmak D, et al. Alteration of the cutaneous microbiome in psoriasis and potential role in Th17 polarization. Microbio. Microbiome. 2018;6:154. doi: 10.1186/s40168-018-0533-1.
Narang T, Dogra S, Kaur I, Kanwar AJ. Malassezia and psoriasis: Koebner’s phenomenon or direct causation? J Eur Acad Dermatol Venereol. 2007;21:1111-2. doi: 10.1111/j.1468-3083.2006.02097.x.
Baroni A, Paoletti I, Ruocco E, Agozzino M, Tufano MA, Donnarumma G. Possible role of Malassezia furfur in psoriasis: modulation of TGF-beta1, integrin, and HSP70 expression in human keratinocytes and in the skin of psoriasis-affected patients. J Cutan Pathol. 2004;31:35-42. doi: 10.1046/j.0303-6987.2004.0135.x.
Scher JU, Ubeda C, Artacho A, Attur M, Isaac S, Reddy SM, et al. Decreased bacterial diversity characterizes an altered gut microbiota in psoriatic arthritis and resembles dysbiosis of inflam- matory bowel disease. Arthritis Rheumatol. 2015;67:128-39. doi: 10.1002/art.38892.
Shapiro J, Cohen NA, Shalev V, Uzan A, Koren O, Maharshak N. Psoriatic patients have a distinct structural and functional fecal microbiota compared with controls. J Dermatol. 2019;46:595– 603. doi: 10.1111/1346-8138.14933.
Hidalgo-Cantabrana C, Go ́mez J, Delgado S, Requena-Lo ́pez S, Queiro-Silva R, Margol- les A, et al. Gut microbiota dysbiosis in a cohort of patients with psoriasis. Br J Dermatol. 2019;181:1287–95. doi: 10.1111/bjd.17931.
Huang L, Gao R, Yu N, Zhu Y, Ding Y, Qin H. Dysbiosis of gut microbiota was closely associated with psoriasis. Sci China Life Sci. 2019;62:807–15. doi: 10.1007/s11427-018-9376-6.
Zákostelská Z, Málková J, Klimešová K, Rossmann P, Hornová M, Novosádová I, et al. Intestinal Microbiota Promotes Psoriasis-Like Skin Inflammation by enhancing Th17 Response. PLoS One. 2016;11:e0159539. doi: 10.1371/journal.pone.0159539.
Codoner FM, Ramırez-Bosca A, Climent E, Carrio ́n- Gutierrez M, Guerrero M, Perez Orquı ́n JM, et al. Gut microbial composition in patients with psoriasis. Sci Rep. 2018;8:3812. doi: 10.1038/s41598-018-22125-y.
Yeh NL, Hsu CY, Tsai TF, Chiu HY. Gut microbiome in psoriasis is perturbed differently during secukinumab and ustekinumab therapy and associated with response to treatment. Clin Drug Investig. 2019;39:1195–203. doi: 10.1007/s40261-019-00849-7.
Ho BS, Ho EXP, Chu CW, Ramasamy S, Bigliardi-Qi M, de Sessions PF, Bigliardi PL. Microbiome in the hair follicle of androgenetic alopecia patients. PLoS One. 2019;14:e0216330. doi: 10.1371/journal.pone.0216330.
Filaire E, Dreux A, Boutot C, Ranouille E, Berthon JY. Characteristics of healthy and androgenetic alopecia scalp microbiome: Effect of Lindera strychnifolia roots extract as a natural solution for its modulation. Int J Cosmet Sci. 2020;42:615-21. doi: 10.1111/ics.12657.
Huang J, Ran Y, Pradhan S, Yan W, Dai Y. Investigation on Microecology of Hair Root Fungi in Androgenetic Alopecia Patients. Mycopathologia. 2019;184:505-15. doi: 10.1007/s11046-019-00345-8.
Mahé YF, Michelet JF, Billoni N, Jarrousse F, Buan B, Commo S, et al. Androgenetic alopecia and microinflammation. Int J Dermatol. 2000;39:576-84. doi: 10.1046/j.1365-4362.2000.00612.x.
Fields JR, Vonu PM, Monir RL, Schoch JJ. Topical ketoconazole for the treatment of androgenetic alopecia: A systematic review. Dermatol Ther. 2020;33:e13202. doi: 10.1111/dth.13202.
Kibar M, Aktan S, Bilgin M. Scalp dermatoscopic findings in androgenetic alopecia and their re- lations with disease severity. Ann Dermatol. 2014;26:478-84. doi: 10.5021/ad.2014.26.4.478. Epub 2014 Jul 31.
Ito T, Tokura Y. The role of cytokines and chemokines in the T-cell-mediated autoimmune process in alopecia areata. Exp Dermatol. 2014;23:787-91. doi: 10.1111/exd.12489.
Pinto D, Sorbellini E, Marzani B, Rucco M, Giuliani G, Id FR. Scalp bacterial shift in Alopecia areata. PLoS One. 2019;14:e0215206. doi: 10.1371/journal.pone.0215206.
Rudnicka L, Lukomska M. Alternaria scalp infection in a patient with alopecia areata. Coexistence or causative relationship? J Dermatol Case Rep. 2012;6:120-4. doi: 10.3315/jdcr.2012.1120. 63. Moreno-Arrones OM, Serrano-Villar S, Perez-Brocal V, Saceda-Corralo D, Morales-Raya C, Ro- drigues- Barata R, et al. Analysis of the gut microbiota in alopecia areata: identification of bacterial biomarkers. J Eur Acad Dermatol Venereol. 2020;34:400–5. doi: 10.1111/jdv.15885. 64. Chua HH, Chou HC, Tung YL, Chiang BL, Liao CC, Liu HH, et al. Intestinal dysbiosis featuring abundance of Ruminococcus gnavus associates with allergic diseases in infants. Gastroenterolo-
gy. 2018;154:154-67. doi: 10.1053/j.gastro.2017.09.006.
Rebello D, Wang E, Yen E, Lio PA, Kelly CR. Hair Growth in Two Alopecia Patients after Fecal Microbiota Transplant. ACG Case Rep J. 2017;4:e107. doi: 10.14309/crj.2017.107.
Xie WR, Yang XY, Xia HH, Wu LH, He XX. Hair regrowth following fecal microbiota transplanta- tion in an elderly patient with alopecia areata: a case report and review of the literature. World J Clin Cases. 2019;7:3074–81. doi: 10.12998/wjcc.v7.i19.3074.
Chiarini C, Torchia D, Bianchi B, Volpi W, Caproni M, Fabbri P. Immunopathogenesis of folliculitis decalvans: clues in early lesions. Am J Clin Pathol. 2008;130:526-34. doi: 10.1309/NG60Y7V0WNUFH4LA.
Yip L, Barrett TH, Harries MJ. Folliculitis decalvans and lichen planopilaris phenotypic spectrum: a case series of biphasic clinical presentation and theories on pathogenesis. Clin Exp Dermatol. 2020;45:63-72. doi: 10.1111/ced.13989.
Jahns AC, Lundskog B, Nosek D, Killasli H, Emtestam L, Alexeyev OA. Microbiology of folliculitis decalvans: a histological study of 37 patients. J Eur Acad Dermatol Venereol. 2015;29:1025-6. doi: 10.1111/jdv.12448.
Moreno-Arrones OM, Campo Rd, Saceda-Corralo D, Jimenez-Cauhe J, Ponce-Alonso M, Serrano-Villar S, Jaén P, Paoli J, Vañó-Galván S, Folliculitis decalvans microbiological signature is specific for disease clinical phenotype. J Am Acad Dermatol. 2020:S0190-9622(20)32894-2. doi: 10.1016/j.jaad.2020.10.073.
Matard B, Donay JL, Resche-Rigon M, Tristan A, Farhi D, Rousseau C, et al. Folliculitis de- calvans is characterized by a persistent, abnormal subepidermal microbiota. Exp Dermatol. 2020;29:295-8. doi: 10.1111/exd.13916.
Costerton W, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G. The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest. 2003;112:1466-77. doi: 10.1172/JCI20365. Erratum in: J Clin Invest. 2007;117:278
Trüeb RM, Pericin M, Hafner J, Burg G. Bündelhaar-Follikulitis [Tufted hair folliculitis]. Hautarzt. 1997;48:266-9. doi: 10.1007/s001050050582. PMID: 9206717.
Rebora A. Telogen effluvium revisited. G Ital Dermatol Venereol. 2014;149:47-54.
Magro CM, Rossi A, Poe J, Manhas-Bhutani S, Sadick N. The role of inflammation and immunity in the pathogenesis of androgenetic alopecia. J Drugs Dermatol. 2011;10:1404-11.
Rinaldi F, Trink A, Pinto D. Efficacy of postbiotics ina PRP-like cosmetic product for the treat- ment of alopecia area Celsi: a randomized double-blinded parallel-group study. Dermatol Ther. 2020;10:483-93.doi:10.1007/s13555-020-.
Zareie E, Mansouri P, Hosseini H, Sadeghpour O, Shirbeigi L, Hejazi S, Emtiazy M. Effect of oral administration of Triphala, a polyphenol-rich prebiotic, on scalp sebum in patients with scalp seborrhea a randomized clinical trial. J Dermatolog Treat. 2020;20:1-6. doi: 10.1080/09546634.2020.1800568.
Filaire E, Dreux A, Boutot C, Volat F, Ranouille E, Demangeon J, et al. Androgenetic alopecia: microbiota landscape and role of Lindera strychnifolia roots extract as a natural solution for hairloss. Sofw J. 2020;5:16-22.
Copyright (c) 2021 Journal of the Portuguese Society of Dermatology and Venereology
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All articles in this journal are Open Access under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).