Cutaneous Manifestations of Rasopathies

  • Virgínia Coelho de Sousa Interna de Dermatologia e Venereologia/Dermatology and Venereology Resident, Hospital de Santo António dos Capuchos, Centro Hospitalar de Lisboa Central, Lisboa, Portugal
  • Inês Marques Fonseca Assistente Hospitalar de Pediatria/Consultant of Pediatry, Hospital do Barreiro, Centro Hospitalar do Barreiro/Montijo, Barreiro, Portugal
  • Ana Cordeiro Assistente Hospitalar de Pediatria/Consultant of Pediatry, Hospital Dona Estefânia, Centro Hospitalar de Lisboa Central, Lisboa, Portugal
  • Maria João Paiva Lopes Assistente Hospitalar Graduada de Dermatologia e Venereologia/Graduated Consultant of Dermatology and Verenerology, Serviço de Dermatologia, Hospital de Santo António dos Capuchos, Centro Hospitalar de Lisboa Central, Lisboa, Portugal
Keywords: Cardiofaciocutaneous Syndrome, Costello Syndrome, Legius Syndrome, LEOPARD Syndrome, Neurofibromatosis 1, ras Proteins/genetics, Skin Diseases/etiology


Rasopathies are a group of developmental diseases associated with mutations in the RAS/MAPK pathway. In the recent years, the study of intracellular signaling pathways allowed the characterization of this heterogeneous group of genetic disorders, with pleomorphic clinical manifestations, depending on the mutated gene. Rasopathies may be associated with cognitive impairment, cardiovascular disease, facial dysmorphism and cutaneous findings, as well as an increased risk of neoplasia. This group includes the Noonan syndrome, LEOPARD syndrome, neurofibromatosis type 1, Legius syndrome, Costello syndrome and cardiofaciocutaneous syndrome. It is important to recognize the cutaneous findings of rasopathies, which can help to establish the clinical diagnosis.


Download data is not yet available.


Ashton-Beaucage D, Therrien M. How Genetics Has Helped

Piece Together the MAPK Signaling Pathway. Methods

Mol Biol. 2017;1487: 1-21.

Tidyman WE, Rauen KA. The RASopathies: developmental

syndromes of Ras/MAPK pathway dysregulation. Curr

Opin Genet Dev. 2009; 19:230-6.

Niemeyer CM. RAS diseases in children. Haematologica.


Der CJ, Krontiris TG, Cooper GM. Transforming genes

of human bladder and lung carcinoma cell lines are

homologous to the ras genes of Harvey and Kirsten sarcoma

viruses. Proc Natl Acad Sci USA. 1982; 79: 3637-40.

Ishioka C, Ballester R, Engelstein M, Vidal M, Kassel J, The

I, et al. A functional assay for heterozygous mutations in

the GTPase activating protein related domain of the neurofibromatosis type 1 gene. Oncogene. 1995 2; 10: 841-7.

Bos JL. Ras Oncogenes in Human Cancer: a Review.

Cancer Res. 1989; 49: 4682-9.

Hernández-Martín, Torrelo A. Rasopatías: trastornos del

desarrollo con predisposición al cáncer y manifestaciones

cutaneas. Actas Dermosifiliogr. 2011; 102:402-16.

Nava C, Hanna N, Michot C, Pereira S, Pouvreau N,

Niihori T, et al. Cardio-facio-cutaneous and Noonan

syndromes due to mutations in the RAS/MAPK signalling

pathway: genotype-phenotype relationships and overlap

with Costello syndrome. J Med Genet. 2007; 44:763-71.

Smpokou P, Zand DJ, Rosenbaum KN, Summar ML. Malignancy

in Noonan syndrome and related disorders. Clin

Genet 2015: 88:516-22.

Heredia Ramírez CE, Barros F, Barreiro Conde J, Castro-

-Feijóo L, Cabanas Rodríguez P, Pombo Arias M. Rasopatías.

Rev Esp Endocrinol Pediatr 2013; 4:68-86.

Hasle H. Malignant diseases in Noonan syndrome and

related disorders. Horm Res. 2009; 72(Suppl 2):8-14.

Loh ML, Vattikuti S, Schubbert S, et al. Mutations in

PTPN11 implicates the SHP-2 phosphatase in leukemogenesis.

Blood. 2004; 103:2325-31.

Nemes E, Farkas K, Kocsis-Deák B, Drubi A, Sulák A, Tripolszki K, Dósa P, Ferenc L, Nagy N, Széll M. Phenotypical

diversity of patients with LEOPARD syndrome carrying the

worldwide recurrent p.Tyr279Cys PTPN11 mutation. Arch

Dermatol Res. 2015; 307:891-5.

Limongelli G, Pacileo G, Marino B, Digilio MC, Sarkozy A,

Elliott P, et al. Prevalence and clinical significance of cardiovascular abnormalities in patients with the LEOPARD

syndrome. Am J Cardiol. 2007; 100:736-41.

Carcavilla A, Santomé JL, Pinto I, Sánchez-Pozo J, Guillén-

Navarro E, Martín-Frías M, et al. LEOPARD syndrome:

a variant of Noonan syndrome strongly associated with

hypertrophic cardiomyopathy. Rev Esp Cardiol. 2013;


Sarkozy A, Conti E, Digilio MC, Marino B, Morini E, Pacileo

G, et al. Clinical and molecular analysis of 30 patients

with multiple lentigines LEOPARD syndrome. J Med

Genet. 2004; 41:e68.

Zhang Z, Cheng R, Liang J, Ni C, Li M, Yao Z. Lentiginous

phenotypes caused by diverse pathogenic genes (SASH1

and PTPN11): clinical and molecular discrimination. Clin

Genet. 2016; 90:372-7.

Hernández-Martín A, Duat-Rodríguez A. An update on

neurofibromatosis type 1: not just café-au-lait spots, freckling,

and neurofibromas. An update. Part I. dermatological

clinical criteria diagnostic of the disease. Actas

Dermosifiliogr. 2016; 107:454-64.

Viskochil D, Buchberg AM, Xu G, Cawthon RM, Stevens J,

Wolff RK, et al. Deletions and a translocation interrupt a

cloned gene at the neurofibromatosis type 1 locus. Cell.


Ratner N, Miller SJ. A RASopathy gene commonly mutated

in cancer: the neurofibromatosis type 1 tumor suppressor.

Nat Rev Cancer. 2015; 15:290-301.

Neurofibromatosis. Conference statement. National Institutes

of Health Consensus Development Conference.

Arch Neurol. 1988; 45:575-8.

DeBella K, Szudek J, Friedman JM. Use of the National

Institutes of Health criteria for diagnosis of neurofibromatosis

in children. Pediatrics 2000; 105:608-14.

Brems H, Chmara M, Sahbatou M, Denayer E, Taniguchi

K, Kato R, et al. Germline loss-of-function mutations in

SPRED1 cause a neurofibromatosis 1-like phenotype. Nat

Genet. 2007; 39:1120-6.

Serra E, Rosenbaum T, Winner U, Aledo R, Ars E, Estivill

X, et al. Schwann cells harbor the somatic NF1 mutation

in neurofibromas: Evidence of two different Schwann cell

subpopulations. Hum Mol Genet. 2000; 9:3055-64.

Hernández-Martín A, Duat-Rodríguez A. An update on

neurofibromatosis type 1: not just café-au-lait spots and

freckling. Part ii. Other skin manifestations characteristic

of nf1. nf1 and cancer. Actas Dermosifiliogr. 2016;


Hernandez-Martin A, Garcia-Martinez FJ, Duat A, Lopez-

-Martin I, Noguera-Morel L, Torrelo A. Nevus anemicus:

A distinctive cutaneous finding in neurofibromatosis type

Pediatr Dermatol. 2015; 32:342-7.

Marque M, Roubertie A, Jaussent A, Carneiro M, Meunier

L, Guillot B, Pinson L, Pinson S, Bessis D. Nevus anemicus

in neurofibromatosis type 1: a potential new diagnostic

criterion. J Am Acad Dermatol. 2013; 69:768-75.

Fenot M, Stalder JF, Barbarot S. Juvenile xanthogranulomas

are highly prevalent but transient in young children

with neurofibromatosis type 1. J Am Acad Dermatol.

; 71:389-90.

Brems H, Park C, Maertens O, Pemov A, Messiaen L,

Upadhyaya M, et al. Glomus tumors in neurofibromatosis

type 1: genetic, functional, and clinical evidence of a

novel association. Cancer Res. 2009; 69:7393-401.

Kumar MG, Emnett RJ, Bayliss SJ, Gutmann DH. Glomus

tumors in individuals with neurofibromatosis type 1. J Am

Acad Dermatol. 2014; 71:44-8.

Allouche J, Bellon N, Saidani M, Stanchina-Chatrousse

L, Masson Y, Patwardhan A, et al. In vitro modeling of

hyperpigmentation associated to neurofibromatosis type

using melanocytes derived from human embryonic

stem cells. Proc Natl Acad Sci U S A. 2015; 112: 9034-9.

Hirbe AC, Gutmann DH. Neurofibromatosis type 1: a

multidisciplinary approach to care. Lancet Neurol. 2014;


Seminog OO, Goldacre MJ Risk of benign tumours of

nervous system, and of malignant neoplasms, in people

with neurofibromatosis: population-based record-linkage

study. Br J Cancer. 2013; 108:193-8.

Pemov A, Li H, Patidar R, Hansen NF, Sindiri S, Hartley

SW, et al. The primacy of NF1 loss as the driver of

tumorigenesis in neurofibromatosis type 1-associated

plexiform neurofibromas. Oncogene. 2017(in press).

Kiuru M, Busam KJ The NF1 gene in tumor syndromes

and melanoma. Lab Invest. 2017; 97:146-57.

Brems H, Pasmant E, Van Minkelen R, Wimmer K,

Upadhyaya M, Legius E, et al. Review and update of

SPRED1 mutations causing Legius syndrome. Hum Mutat.

; 33:1538-46.

Pasmant E, Ballerini P, Lapillonne H, Perot C, Vidaud D,

Leverger G, et al. SPRED1 disorder and predisposition to

leukemia in children. Blood 2009: 114:1131

Hirata Y, Brems H, Suzuki M, Kanamori M, Okada M, Morita

R, et al. Interaction between a Domain of the Negative

Regulator of the Ras-ERK Pathway, SPRED1 Protein, and

the GTPase-activating Protein-related Domain of Neurofibromin

Is Implicated in Legius Syndrome and Neurofibromatosis

Type 1. J Biol Chem. 2016; 291:3124-34.

Pasmant E, Gilbert-Dussardier B, Petit A, de Laval B, Luscan

A, Gruber A, et al. SPRED1, a RAS MAPK pathway

inhibitor that causes Legius syndrome, is a tumour suppressor

downregulated in paediatric acute myeloblastic

leukaemia. Oncogene. 2015; 34:631-8.

Gripp KW, Lin AE, Stabley DL, Nicholson L, Scott Jr CI,

Doyle D, et al. HRAS mutation analysis in Costello syndrome:

genotype and phenotype correlation. Am J Med

Genet A. 2006; 140:1-7.

Lin AE, Grossfeld PD, Hamilton RM, Smoot L, Gripp KW,

Proud V, et al. Further delineation of cardiac abnormalities

in Costello syndrome. Am J Med Genet A. 2002;


Siege DH, Man JA, Krol AL, Rauen KA. Dermatological

Phenotype in Costello Syndrome: Consequences of Ras

Dysregulation in Development. Br J Dermatol. 2012;


Rauen KA, Schoyer L, McCormick F, Lin AE, Allanson JE,

Stevenson DA, et al. Proceedings from the 2009 genetic

syndromes of the Ras/MAPK pathway: From bedside to

bench and back. Am J Med Genet A. 2010; 152A:4-24.

Gripp KW. Tumor predisposition in Costello syndrome.

Am J Med Genet C Semin Med Genet. 2005; 137C:72-7.

Beukers W, Hercegovac A, Zwarthoff EC. HRAS mutations

in bladder cancer at an early age and the possible association

with the Costello Syndrome. Eur J Hum Genet.

; 22:837-9.

Niihori T, Aoki Y, Narumi Y, Neri G, Cave H, Verloes A, et

al. Germline KRAS and BRAF mutations in cardio-facio-

-cutaneous syndrome. Nat Genet. 2006; 38:294-6.

Dentici, MLSarkozy A, Pantaleoni F, Carta C, Lepri F, Ferese

R, et al. Spectrum of MEK1 and MEK2 gene mutations

in cardio-facio-cutaneous syndrome and genotype–phenotype

correlations. Eur J Hum Genet. 2009; 17:733-40.

Roberts A, Allanson J, Jadico SK, Kavamura MI, Noonan

J, Opitz JM, et al. The cardiofaciocutaneous syndrome. J

Med Genet. 2006; 43:833-42.

Pierpont ME, Magoulas PL, Adi S, Kavamura MI, Neri G,

Noonan J, et al. Cardio-facio-cutaneous syndrome: clinical

features, diagnosis, and management guidelines.

Pediatrics. 2014; 134: e1149–e1162.

Siegel DH, McKenzie J, Frieden IJ, Rauen KA. Dermatologic

findings in 61 mutation-positive individuals with

cardio-facio- cutaneous syndrome. Br J Dermatol. 2011;


Niihori T, Aoki Y, Narumi Y, Neri G, Cave H, Verloes A, et

al. Germline KRAS and BRAF mutations in cardio-facio-

-cutaneous syndrome. Nat Genet. 2006; 38:294-6.

Al-Rahawan MM, Chute DJ, Sol-Church K, Gripp KW, Stabley

DL, McDaniel NL, et al. Hepatoblastoma and heart

transplan- tation in a patient with cardio-facio-cutaneous

syndrome. Am J Med Genet A. 2007; 143A:1481-8.

Korf B, Ahmadian R, Allanson J, Aoki Y, Bakker A, Wright

EB, et al. The third international meeting on genetic disorders

in the RAS/MAPK pathway: towards a therapeutic

approach. Am J Med Genet A. 2015; 167A:1741-6.

How to Cite
Coelho de Sousa, V., Marques Fonseca, I., Cordeiro, A., & Paiva Lopes, M. J. (2017). Cutaneous Manifestations of Rasopathies. Journal of the Portuguese Society of Dermatology and Venereology, 75(1), 9-18.
Continuous Medical Education