Resposta Imunológica no Melanoma: Base para a Compreensão do Papel da Imunoterapia com Inibidores de “Checkpoints” Imunológicos

  • Eugénia Matos Pires Serviço de Dermatologia e Venereologia Hospital de Santo António dos Capuchos, CHLC
  • Cecília Moura Instituto Português de Oncologia de Lisboa Francisco Gentil
Palavras-chave: Imunoterapia, Melanoma/imunologia, Melanoma/tratamento, Receptor de Morte Celular Programada 1, Vigilância Imunológica

Resumo

O conhecimento do processo de evolução tumoral é essencial para compreender os alvos terapêuticos no controle da doença. A forma como o sistema imune influência o desenvolvimento e a progressão do cancro é uma questão desafiante na área da imunologia. Atualmente reconhece-se o papel paradoxal do sistema imunológico neste processo: por um lado protege contra o crescimento tumoral, destruindo células exprimindo antigénios tumorais “aberrantes”, por outro pode favorecer a sua progressão, selecionando células tumorais que escapam à vigilância imunológica e são capazes de sobreviver num hospedeiro imunocompetente. Esta observação deu origem ao conceito de “cancer immunoediting”, que explica a influência do sistema imune na progressão tumoral. Tendo em conta algumas observações associadas ao melanoma, como por exemplo, o desenvolvimento de vitiligo, a possibilidade de regressão e a correlação com a imunossupressão, este tem sido considerado um exemplo de tumor imunogénico, cujo mecanismo patofisiológico reconhecido até à data se enquadra no conceito de “immunoediting”. Reconhecida a importância de CTLA-4 (antigénio linfócitário T citotóxico) e PD-1 (proteína de morte celular programada) como “checkpoints” imunológicos na regulação da atividade das células T em resposta à progressão tumoral, estas moléculas têm sido considerados alvos terapêuticos importantes no tratamento do melanoma avançado. O presente artigo pretende rever sucintamente o processo de evolução tumoral e respetiva interação com o sistema imune, bem como o mecanismo de ação dos “checkpoints” inibitórios por forma a melhor compreender os novos alvos da imunoterapia no melanoma avançado, que serão revistos em trabalho futuro.

Downloads

Não há dados estatísticos.

Referências

– Burnet M. Cancer: a biological approach. III. Viruses associated with neoplastic conditions. IV. Practical applications. Br Med J. 1957; 1: 841–847.

- Stutman O. Tumor development after 3-methylcholanthrene in immunologically deficient athymic-nude mice. Science. 1974 ;183(4124):534-6.

- Stutman O. Immunodepression and malignancy. Adv Cancer Res. 1975; 22: 261-422.

Old lJ, Boyse EA. Immunonology of experimental tumors. Annu Rev Med. 1964; 15:167-86.

- Pardoll D. Does the immune system see tumors as foreign or self? Annu Rev Immunol. 2003; 21: 807-39.

- Balkwill F, Mantovani A. Cancer and inflammation: implications for pharmacology and therapeutics. Clin Pharmacol Ther. 2010 ; 87: 401-6.

- Vendramini-Costa DB, Carvalho JE. Molecular link mechanisms between inflammation and cancer. Curr Pharm Des. 2012;18(26):3831-52.

- Dighe AS, Richards E, Old LJ, Schreiber RD. Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN gamma receptors. Immunity. 1994 ;1(6):447-56.

- Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011; 29: 235-71.

- Silverberg MJ, Chao C, Leyden WA, Xu L, Horberg MA, Klein D et al. HIV infection, immunodeficiency, viral replication, and the risk of cancer. Cancer Epidemiol Biomarkers Prev. 2011; 20: 2551-9

- Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002; 3: 991-8.

- Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science. 2011; 331: 1565-70.

- Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144: 646-74.

- Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer Biol. 2015; 35: Suppl:S185-S198

- Yuan J, Page DB, Ku GY, Li Y, Mu Z, Ariyan C, et al. Correlation of clinical and immunological data in a metastatic melanoma patient with heterogeneous tumor responses to ipilimumab therapy. Cancer Immun. 2010; 10: 1.

- Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010; 363: 711-23.

- Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012; 366: 2455-65.

- Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012 ; 366: 2443-54.

- Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape. Curr Opin Immunol. 2014; 27: 16-25.

- Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science. 2011; 331: 1565-70.

- Atsumi T, Singh R, Sabharwal L, Bando H, Meng J, Arima Y et al. Inflammation amplifier, a new paradigm in cancer biology. Cancer Res. 2014; 74: 8-14.

- Koebel CM, Vermi W, Swann JB, Zerafa N, Rodig SJ, Old LJ et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature. 2007; 450: 903-7.

- Khong HT, Restifo NP. Natural selection of tumor variants in the generation of "tumor escape" phenotypes. Nat Immunol. 2002; 3: 999-1005.

- Chikuma S. Basics of PD-1 in self-tolerance, infection, and cancer immunity. Int J Clin Oncol. 2016 Jun;21(3):448-55

- Kee D, McArthur G. Immunotherapy of melanoma. Eur J Surg Oncol. 2017; 43: 594-603

- Sanlorenzo M, Vujic I, Posch C, Dajee A, Yen A, Kim S, et al. Melanoma immunotherapy. Cancer Biol Ther. 2014; 15: 665-74.

- Brunet JF, Denizot F, Luciani MF, Roux-Dosseto M, Suzan M, Mattei MG, et al. A new member of the immunoglobulin superfamily--CTLA-4. Nature. 1987; 328: 267-70.

- Walker LS, Sansom DM. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat Rev Immunol. 2011; 11: 852-63.

– Chikuma S. CTLA-4, an Essential Immune-Checkpoint for T-Cell Activation. Curr Top Microbiol Immunol. 2017. doi: 10.1007/82_2017_61. [Epub ahead of print]

- Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. 1995; 182: 459-65.

- Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM, et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1994; 1: 405-13.

- Wells AD, Walsh MC, Bluestone JA, Turka LA. Signaling through CD28 and CTLA-4 controls two distinct forms of T cell anergy. J Clin Invest. 2001; 108: 895-903.

- Schwartz RH. T cell anergy. Annu Rev Immunol. 2003; 21: 305-34.

- Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J. Exp. Med. 2009; 206:1717–1725.

- Chambers CA, Cado D, Truong T, Allison JP. Thymocyte development is normal in CTLA-4-deficient mice. Proc Natl Acad Sci U S A. 1997; 94: 9296-301.

- Scalapino KJ, Daikh DI. CTLA-4: a key regulatory point in the control of autoimmune disease. Immunol Rev. 2008; 223: 143-55.

- Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996; 271: 1734-6.

- Shrikant P, Khoruts A, Mescher MF. CTLA-4 blockade reverses CD8+ T cell tolerance to tumor by a CD4+ T cell- and IL-2-dependent mechanism. Immunity. 1999; 11: 483-93.

- Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol. 2007; 19: 813–824.

- Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012; 366: 2455-65.

- Nishimura H, Agata Y, Kawasaki A, Sato M, Imamura S, Minato N, et al. Developmentally regulated expression of the PD-1 protein on the surface of double-negative (CD4 CD8 ) thymocytes. Int Immunol. 1996; 8: 773-80.

- Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11:3887–3895.

- Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012; 12: 252-64.

- Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, White DE, et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood. 2009; 114: 1537–1544.

- Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nature Med. 2002; 8:793–800.

- Tsirigotis P, Savani BN, Nagler A. Programmed death-1 immune checkpoint blockade in the treatment of hematological malignancies. Ann Med. 2016; 48: 428-439.

- Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014; 515: 568-71.

- Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med. 2012; 4:127ra37.

- Frydenlund N, Mahalingam M. PD-L1 and immune escape: insights from melanoma and other lineage-unrelated malignancies. Hum Pathol. 2017; 66: 13-33.

Publicado
2018-04-05
Como Citar
Matos Pires, E., & Moura, C. (2018). Resposta Imunológica no Melanoma: Base para a Compreensão do Papel da Imunoterapia com Inibidores de “Checkpoints” Imunológicos. Revista Da Sociedade Portuguesa De Dermatologia E Venereologia, 76(1), 47-52. https://doi.org/10.29021/spdv.76.1.868
Secção
Artigo de Revisão